Поделиться:
  Угадай писателя | Писатели | Карта писателей | Острова | Контакты

Алексей Лосев - Хаос и структура [0]
Известность произведения: Средняя
Метки: sci_math, sci_philosophy

Аннотация. "Все философско -математические и логические исследования, представленные в данном томе, созданы в 30-40 -х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, - Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая-философским вопросам логики, и ее образуют работы «О методе бесконечно -малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно -малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Полный текст.
1 2 3 4 5 6 

Что такое постоянная величина и что такое переменная величина, это известно уже из элементарной математики. В анализе эта пара понятий играет, однако, гораздо большую роль. Возьмем, напр., площадь треугольника. Из элементарной геометрии известно, что эта площадь равняется половине произведения основания на высоту. Эта формула — «половина произведения основания на высоту» — нисколько не зависит от величины самого основания и самой высоты. Самая эта связь основания и высоты для выражения площади вполне постоянна. Еще ярче, однако, антитеза постоянной и переменной величин в случае, когда выставляется теорема: «сумма углов треугольника равняется двум прямым». Сколько бы ни увеличивать и ни уменьшать отдельные углы треугольника, сумма их все равно остается равной двум прямым. Ясно, что величины отдельных углов треугольника суть переменные величины и сумма всех трех сторон треугольника есть величина постоянная. В физике устанавливается закон о том, что произведение давления газа на его объем есть величина постоянная. Следовательно, если меняется давление, то соответствующе меняется объем газа, произведение же обеих величин никогда не меняется. Ясно, что объемы и давления суть в этом законе переменные величины, их же произведение—постоянная величина. Вдумываясь в существо этих двух категорий, мы отчетливо видим, что отличие их от величины просто, от величины вообще заключается в том, что тут «величина вообще» содержит в себе еще особый слой, слой внешней характеристики. Постоянная и переменная величина есть, прежде всего, величина просто, а во–вторых, еще утверждается, что эта величина имеет такое–то или такое–то значение. Это значение — чисто внешне в отношении величины, взятой самой по себе. В одном случае угол треугольника равен 30°, другой раз—45°, третий раз — 60° и т. д. и т. д. Эта величина может быть какой угодно (имея в виду общую сумму углов, равную двум прямым). Размеры угла, ясно по самому смыслу, не имеют никакой связи с самим понятием угла. Поэтому размерность есть нечто внешнее в отношении самого понятия угла. И на этом основании мы и говорили, что постоянная и переменная величины есть внешнее инобытие числа и эта внешность, конечно, к тому же вполне отождествлена с непосредственно данным числом, с числом самим по себе. Но интереснее всего то, что получается от соединения этих двух категорий—постоянной и переменной величин. Диалектический синтез всегда особенно интересен; он часто таит в себе полную неожиданность. Так, из синтезирования целого и дробного получалась (быть может, с первого взгляда довольно неожиданно) категория бесконечности. Что же получится из синтезирования постоянной и переменной величин? Какова та категория, в которой обе эти категории совпадают совершенно, точно сливаясь в полную неразличимость на фоне вполне новой и в них не содержащейся конструкции? Такой категорией является непрерывность. Подобно тому как бытие и небытие объединяются в становление, так и постоянная величина с переменной объединяются в непрерывной величине. Непрерывная величина, во–первых, есть нечто постоянное. В самом деле, самый смысл непрерывности заключается в том, что каждый ее момент совершенно одинаков со всяким предыдущим моментом. Непрерывная величина потому и «не прерывается», что она везде одинаковая, что она не меняется, что она всецело постоянная. Таким образом, постоянство, несомненно, входит в категорию непрерывности в качестве конститутивного момента; непрерывность без него немыслима. Однако также ясно, во–вторых, что непрерывность требует для себя и момента изменения. Это значило бы, что вся непрерывность свернулась бы в одну точку. Допустим, что в непрерывности нет изменения. В то же время, однако, в непрерывности мыслится некий процесс. Непрерывность есть именно процесс, т. е. движение, изменение; но это такой процесс, в котором все моменты процесса сливаются в одно и то же, в один и тот же момент. Если различать в каждом моменте самый факт этого момента, субстанцию, и, с другой стороны, его смысловую, идейную сторону, то необходимо сказать, что по факту, по субстанции, все эти точки абсолютно разделены, внеположены, находятся одна вне другой; с точки же зрения смысла, идеи все они суть нечто одно, совершенно одно, неразличимое тождество и единство. В этом и заключается тайна непрерывности: в ней дано фактическое движение[225], движение по факту, т. е. разнообразие, бесконечное фактическое разнообразие отдельных точек; и с другой стороны, тут дано полное смысловое идейное отождествление всех бесконечных точек, как бы они ни возникали и сколько бы их ни возникало. Непрерывная величина есть тождество постоянной и переменной величин. Непрерывность, однако, не может быть утверждаема сама по себе, без другой категории, которая с нею соотносительна. Раз мыслится непрерывность, то тем самым должна мыслиться и прерывность. Одно без другого совершенно немыслимо. Таким образом, достигнутый нами синтез непрерывности в свою очередь переходит в новый антитезис, в прерывную величину, и, следовательно, в свою очередь требует еще нового синтеза. Синтезом прерывности и непрерывности является предел. Предел немыслим вне понятия процесса. Предел есть то, что достигается в течение того или иного определенного процесса. Какой это процесс? Если это есть именно процесс достижения, то это достижение происходит постоянно, постепенно. Чем больше и дальше двигаемся мы в сфере этого процесса, тем ближе мы к пределу, тем больше мы его достигаем. Итак, предел есть некое движение, изменение и некий процесс. Спросим теперь себя: какой же именно это процесс? С одной стороны, даже самое понятие предела говорит о некоей определенности и конечности. Движение происходит в определенном направлении, и оно имеет какую–нибудь определенную, конечную цель. Без этой идеи не может существовать никакого предела. Однако, с другой стороны, предел в математике не мыслится просто, как граница и конец. Этот предел в математике всегда мыслится как нечто недостижимое, хотя и конечное, как нечто притягивающее к себе издали приближенную величину, но никогда не совпадающее с этой приближенной величиной. Предел, с одной стороны, конечен, а с другой—эта его конечность никогда не может быть вполне адекватно охвачена. Как это можно совместить? Совместить это можно только тем обычным диалектическим путем, который от бытия и небытия ведет к становлению. Необходимо, чтобы достижение конечного предела и постоянное его недостижение совместились во взаимном становлении, т. е. так, чтобы достигнутая конечность все время сдвигалась с места и заменялась другой, тоже достигнутой конечностью и чтобы бесконечное, постоянное достижение выражалось, тоже постоянно, в определенных конечных пунктах. В таком становлении мы получаем, следовательно, бесконечный ряд конечных величин, но эти конечные величины, уменьшаясь все больше и больше, приближаются к определенной величине, хотя никогда ее и не могут достигнуть. Становление, как мы видели, всегда алогично: оно неразличимо внутри себя и оно не имеет никаких точных границ и на своей периферии. В данном случае в процессе становления находится прерывность в отношении непрерывности и непрерывность в отношении прерывности. Это значит, что прерывность должна становиться непрерывностью, а непрерывность должна становиться прерывностью. Поскольку становление есть всегда постепенный процесс, постольку прерывность становится непрерывностью постепенно, сплошно, последовательно, равно как и непрерывность — прерывностью. Возможно это только так, что прерывность делается все меньше и меньше прерывистого, т. е. промежутки между прерывными моментами делаются все меньше и меньше и таким образом прерывность все больше и больше превращается в непрерывность. Точно так же и непрерывность по мере своего продвижения все больше и больше покрывается прерывными точками, и эти прерывные точки застилают ее все гуще и гуще — правда, без всякой возможности когда–нибудь достигнуть абсолютного перекрытия непрерывности прерывностью. Заметим, что становление алогично не только в том смысле, что оно неразличимо само в себе, само внутри себя, но и в том, что оно неразличимо и по своей периферии, т. е. не имеет никаких законченных границ и в этом смысле безгранично. Отсюда понятно, почему становление прерывности непрерывностью или непрерывности прерывностью никогда не может быть кончено; по самому смыслу своему оно абсолютно беспрерывно. И значит, предел, диалектически синтезирующий непрерывность и прерывность — по типу категории становления, — есть в одно и то же время и полная недостижимость для числового процесса, и выраженность, достигнутость в каждый отдельный момент этого процесса, причем эта выраженность и достигнутость бесконечно интенсифицируется, возрастает. Предел—это та категория, которая (правда, в довольно вялом виде) применяется уже и в элементарной математике. Главное ее место, однако, в математическом анализе; и тут на ней, можно сказать, построена целая наука. Пусть в круг вписан квадрат. Если мы удвоим количество его сторон, то площадь его, конечно, увеличится и периметр его тоже увеличится. Это удвоенное количество сторон может быть удвоено еще раз, еще раз и еще раз. Оно может быть удвоено до бесконечности. Периметр, последовательно меняющий свою форму в зависимости от количества удвоений, будет стремиться, очевидно, к окружности и в пределе совпадет с нею. Окружность, говорят, есть предел вписанных многоугольников при бесконечном увеличении количества сторон, равно как и предел описанных многоугольников при бесконечном увеличении количества сторон. Здесь окружность есть нечто определенное и конечное; каждый многоугольник, вписанный или описанный, с любым количеством сторон, есть тоже величина определенная и конечная; но многоугольник тут дан не сам по себе, но в своем становлении (в смысле увеличения количества сторон); потому и количество сторон все время растет, по длине они делаются все меньше, и, значит, в целом же они приближаются все больше и больше к окружности; окружность для них—предел. Тут вполне отчетливо выступают две основные категории—непрерывности и прерывности и их синтетическое взаимопревращение, сплошной и бесконечный переход непрерывности в прерывность и прерывности в непрерывность. Итак, вот диалектическая схема указываемых нами понятий: непрерывность, прерывность, предел, при этом непрерывность сама возникает как синтез постоянной и переменной величин. 5. Бесконечно–малое и бесконечно–большое. Только теперь мы можем формулировать то основное понятие, на котором строится весь математический анализ, — понятие бесконечно–малого (и, значит, бесконечно–большого). Оно возникает как напряженное, конденсированное выражение всех только что рассмотренных нами категорий. Непрерывность (с постоянной и переменной величинами), прерывность и предел — все это, вместе взятое, может рассматриваться как нечто целое. Именно — это то, что противостоит числу, взятому в его чисто арифметическом виде, т. е. числу, взятому как непосредственное бытие. Когда мы берем числа натурального ряда и производим над ними арифметические действия, то здесь не возникает никаких сопоставлений каждого отдельного числа с тем или иным его внутренним или внешним функционированием. Произведя, напр., деление одного числа на другое, мы не ставим никаких вопросов о том, являются ли эти числа, делимое, делитель и частное, величинами постоянными, переменными, прерывными, непрерывными или предельными. Никаких таких вопросов тут совершенно не возникает. Это понятно. Все эти вопросы связаны с числом в том или ином опосредствованном виде. Когда мы говорим «5», «10», «», «3» и т. д., мы производим арифметические операции над числами в том их виде, как они и даны. Когда же мы говорим, напр., «переменная величина», то тут имеется в виду не только непосредственная значимость числа самого по себе, но еще и его определенное логическое отношение к тому фону, на котором оно дано. Тут—опосредствованная значимость числа. Но если это так, то число арифметическое, как непосредственно значащее, число в смысле непрерывности, прерывности и предела, как опосредствованно значащее, находятся друг в отношении друга в состоянии диалектической антитезы. Если по общей диалектической схеме непосредственность признать за бытие, то опосредст–вованность необходимо будет признать за небытие, и между обеими категориями возникает диалектическое противоречие. Оно ждет разрешения и синтеза. Что нужно для синтеза? Нужно, чтобы непосредственно значащее арифметическое число восприяло на себя категории непрерывности, прерывности и предела, т. е. чтобы оно лишилось своей стационарной значимости и проб [уд ]ило в себе эту двуплановость, требуемую данными категориями. С другой стороны, также необходимо, чтобы эти три категории воплотились на реально значащем числе, или величине, и перестали быть только отвлеченными признаками неизвестно каких величин. Этот диалектический синтез и совершается в понятии бесконечно–малого. Самое простое математическое определение бесконечно–малого есть следующее. Бесконечно–малое есть переменная величина, имеющая своим пределом нуль. С виду простое, это определение, однако, содержит в себе немало разных подчиненных моментов, и они враздробь указаны нами в предшествующем, подготовительном изложении. Во–первых, бесконечно–малое есть величина переменная. Одно уже это тянет за собою всю систему категорий, которую мы наметили выше. И уже один этот момент накладывает неизгладимую печать на всю изучаемую нами категорию. Бесконечно–малое—это сплошь стихия становления, изменения; тут ничто не стоит на месте, все движется и беспокойно требует расширения, углубления, распространения. Во–вторых, бесконечно–малое есть такая переменная величина, которая имеет определенный предел. Отнюдь не всякая переменная величина имеет предел, стремится к пределу. Возьмем самую обыкновенную синусоиду. Эта равномерно вьющаяся вокруг прямой кривая никуда не стремится, ни к какому пределу не стремится, сколько бы ее ни продолжали. Она проходит одни и те же значения бесконечное число раз; эти значения неизменно повторяются, и кривая от этого ровно ни к чему не приближается и не стремится ни к какому пределу. Бесконечно–малое [же] как раз имеет такой предел, неизменно стремится к нему; предел управляет бесконечно–малым и притягивает его к себе из таинственного полумрака бесконечности. Это создает для понятия бесконечно–малого вполне оригинальный стиль, который еще усиливается от других элементов этого понятия. Подчеркнем, что изменение, поскольку речь зашла о пределе, дано тут не само по себе, но в становлении, в алогическом становлении. Оно само стремится в какую–то даль, и стремится сплошно, неразличимо, безраздельно. Предел, следовательно, достигается тут при помощи бесконечного процесса приближения. Другими словами, этот предел никогда и нигде не достигается, а дано только вечное стремление, вечное движение, неустанный уход в бесконечные дали. В–третьих, бесконечно–малое есть такая переменная величина, которая имеет своим пределом нуль. Нуль в качестве предела рисует всю нашу картину вечного стремления совсем в другом, в небывалом виде. Что это значит? Что значит это вечное стремление—и к чему же? К нулю, в ничто, в небытие! Это значит, что дух, живущий по законам бесконечно–малого, не только стремится куда–то вдаль и не только это стремление вечно, но, кроме того, тут ставится задача исчерпания бытия, охвата бытия до последней его точки, использование его до тех пор, пока не останется в нем нуль бытия, пока не перестанет существовать само бытие и не превратится оно в ничто. Инфинитезимальный дух хочет исчерпать все бытие, пережить всю стихию жизни, завоевать до последней точки все существующее, охватить его умом и сердцем, сделать соизмеримым с собою, адекватным себе, превратить его из сверхразумной бездны в ощутимую бездну, перевести ее всю–всю целиком на язык своего субъекта, своего сознания, потопить и растворить в глубинах собственной личности. Вот что значит это стремление бесконечно–малого к нулю как к своему пределу; и вот почему это не вообще переменная величина и не вообще процесс, хотя бы и бесконечный процесс, но процесс, имеющий своею целью нуль, исчерпание охватываемого им бытия до нуля. В этом смысле бесконечно–большое мало чем отличается от бесконечно–малого. Если бесконечно–малое есть переменная величина, стремящаяся к нулю, то бесконечно–большое, очевидно, есть отношение единицы к этому бесконечно–малому. Если α=, то при условии lim ∞ = 0, lim β=∞, а при условии lim β =∞, litn α = 0. Чем больше уменьшается α, тем больше увеличивается β; и когда α стремится к нулю, β стремится к бесконечности. Наоборот, чем больше а, тем меньше β; и когда α стремится к бесконечности, β стремится к нулю. Тут вполне ясна связь, существующая между бесконечно–малым и бесконечно–большим. Когда мы имеем какой–нибудь цельный предмет, то, уходя в его глубину с целью исчерпать его до нуля, пользуясь идеей бесконечного процесса, мы сразу получаем и бесконечно–малое, и бесконечно–большое: бесконечно–малое мы получаем, если имеем в виду отдельные моменты процесса, и бесконечно–большое, — если имеем в виду весь пройденный путь. Если сравнить все целое с отдельной стремящейся точкой, мы получаем уже не просто целое, но целое, разработанное именно с точки зрения этой отдельной стремящейся точки, с точки зрения этого бесконечно–малого, т. е. получаем бесконечно–большое. И наоборот, сравнивши бесконечно–большое, возникшее из всех бесконечно–малых, с целым, мы замечаем, что оно могло возникнуть действительно только из передвижения бесконечно–малого, т. е. получаем идею бесконечно–малого. Так связаны между собой эти оба понятия, являясь, в сущности, одной и той же идеей, рассматриваемой только с разных точек зрения. Можно дать еще другое определение бесконечно–малого, хотя это определение, конечно, в сущности своей может быть только тождественным с первым. Именно, бесконечно–малое определяют еще так. Бесконечно–малое есть такая переменная величина, которая может стать меньше любой заданной величины. Пожалуй, это определение несколько ярче подчеркивает момент процессуальное, играющий такую огромную роль во всем понятии бесконечно–малого. Тут важны именно слова «может стать меньше любой заданной величины». В них выражена стихия становления, без которой бесконечно–малое не существует. В предыдущем определении момент становления и процессуальности выражен слабее, но зато лучше выражена идея исчерпания неисчерпания, идея, так сказать, «объятия необъятного». Этот момент тоже основной в учении о бесконечно–малом. И таким образом, оба определения, имея в виду один и тот же предмет, подчеркивают в нем одинаково важные, хотя и различные, стороны, причем каждая из этих сторон необходимо предполагает другую, так что в конце концов безразлично, какую сторону выдвигать и на каком определении останавливаться. Итак, бесконечно–малое есть диалектический синтез числа в его непосредственном (арифметическом) бытии и числа в его опосредствованном (инобытийном в отношении к арифметическому) бытии. Бесконечно–малое есть прежде всего некая чистая величина, и в этом сказывается участие здесь арифметического элемента. С другой стороны, это не просто арифметическая величина со всей ее статической структурой, но такая величина, которая вобрала в себя и воплотила в себе эти понятия, инобытийные в сравнении с арифметической статической раздельностью, — непрерывность, прерывность, предел. Поэтому можно дать такую диалектическую формулу понятия бесконечно–малого. Бесконечно–малое есть тождество (синтез) непосредственно–арифметической значимости числа и опосредствованно–инобытийно–го, внутренно–внешнего становления. Этот момент внутренно–внеш–него становления важен потому, что, как мы помним, бесконечность уже сама по себе, независимо от ее специального — инфинитези–мального, или аналитического, типа есть синтез целого и дробного, т. е. синтез внутренних особенностей строения числа, в то время как природа непрерывности, прерывности и предела возможна у нас на почве именно внешней ориентированности числа на окружающем его фоне. Предложенная формула, конечно, совершенно тождественна с двумя указанными, чисто математическими определениями. Но это есть формула философская, логическая или, точнее, диалектическая, т. е. основанная на анализе и антиномико–синтетической структуре понятий, в то время как те два определения суть чисто математические определения, т. е. основанные на формально–числовом, формально–счислительном объединении счетных величин. В диалектике — понятия и категории, в математике — числа и величины. В диалектике—антиномико–синтетическая связь понятий и категорий, в математике—счислите л ьно–счетная связь чисел и величин. 6. Сущность функции. Есть, однако, еще категория, столь же глубоко определяющая стиль науки о бесконечно–малом, как и само понятие бесконечно–малого. Это понятие функции. Школьные математики и это понятие угробили до той степени, когда оно превращается в сухую и чисто вычислительную категорию, имеющую только внешне–прикладное значение. Это понятие гораздо богаче школьного его употребления, в особенности если иметь в виду его социально–исторические корни. Что такое функция и когда это понятие играет наибольшую роль в математике и философии? Функция есть идеальная, смысловая картина вещи в условиях отсутствия самой вещи или, вернее, в условиях непринимания во внимание ее реального, субстанционального существования. Вещь существует, но мы воздерживаемся от суждения по вопросам ее реального существования. Реальное существование вещи нас нисколько не интересует; можно даже сказать, что, рассуждая о функциях, человек ровно нисколько не заинтересован в субстанциональном существовании вещей. Человек заинтересован в них не постольку, поскольку они существуют, но поскольку они мыслятся. Не будучи в состоянии обнять всего мира физически, человек стремится охватить его мысленно, воплотить его в своей сознательной мысли, сделать соизмеримым своему собственному сознанию. Эту позицию западноевропейского человека мы уже формулировали выше. Но каким же образом он смог бы охватить всю мировую действительность в своем реально–человеческом рассуждении? Как быть ему с этой необъятной громадой пространства и времени, в которой он теряется и тонет как незаметная песчинка? Единственный путь для этого — отвергнуть всякую субстанциальность, забыть эту необъятную массу действительности, обесплотить эту невместимую бесконечность мира и превратить только в логическую схему, в рассудочную систему, оторвать ее от бытийственных, материальных основ и корней. Наполните теперь эту логическую и рассудочную схему действительности (взятую вместо самой действительности) чисто числовым содержанием, и — вы получаете понятие функции, эту отвлеченную картину бытия, взятую без самого бытия. Отсюда мы видим, какими интимными корнями связано функциональное мышление с глубинами западноевропейской духовной жизни. Что такое функция? Тут тоже есть, как и везде, своя тройственность принципов, демонстрирующая понятие функции в развитом виде. Именно, прежде всего мы наталкиваемся на понятие независи–мо–переменного. Будем брать переменное само по себе, переменное в его непосредственности и самостоятельности, или, как говорят в диалектике, «в себе», переменное в себе. Очевидно, оно тем самым будет независимым переменным. В треугольнике, напр., длина основания или высоты берется совершенно независимо от других элементов и величин, из которых состоит треугольник. Пусть длина основания равна 1 см, 2 см, 3 см и т. д. — все это будут величины независимые (именно как длина). Далее, помысливши независимое переменное, мы по общей диалектической необходимости обязательно мыслим и зависимое переменное. Длина основания и длина высоты треугольника ни от чего не зависят, но площадь треугольника уже зависит от основания и высоты. Чем больше, напр., основание, тем больше будет и вся площадь, а чем меньше, напр., высота, тем меньше будет и площадь. Тут есть определенная зависимость, и площадь треугольника зависит от основания и высоты треугольника. Наконец, важно иметь не просто зависимое переменное и независимое переменное, но также и определенную формулу этой зависимости. Поскольку независимое переменное есть некая определенная величина и поскольку зависимое переменное говорит о какой–то зависимости вообще и между обоими этими понятиями существует диалектическое противоречие, постольку синтез обоих понятий должен объединить определенность значения с зависимостью вообще и дать не просто зависимость вообще, но уже определенного вида зависимость. Тут мы видим, какие же, собственно, процессы произошли с зависимым переменным, когда мы поставили его в непосредственную связь с независимым переменным. Эти три момента — независимое переменное, зависимое переменное, конкретная форма зависимости — все еще не дают понятия функции во всей его полноте. Дело в том, что функция, если точно формулировать этот термин, становится только тогда функцией, когда все эти три входящих в нее момента отрываются от действительности в ее субстанциональности, в ее реальности, когда они начинают мыслиться как чисто смысловые возможности, как построение чистой мысли. Функциональное отношение—это такое отношение, когда, не желая ничего утверждать о реальности и о вещах, мы строим какую–нибудь рассудочную схему, но за которую отказываемся отвечать как за что–то абсолютное и непреложное. Конечно, наука строит схемы, которые бы максимально соответствовали «действительности». Но когда наступает пора функционализма, то тут надо много кое–чего принять во внимание, чтобы правильно судить о «соответствии действительности». Античность и Средние века—это культура абсолютизма, абсолютного бытия. Бытие — вечная, живая, всесильная субстанция, мировая — в языческой античности и личностно–божественная — в христианском средневековье. Все смысловое, идеальное порождается из недр этого абсолютного бытия, из его непознаваемых и сверхразумных глубин, проявляясь и в человеческом субъекте как в одной из эманаций этого абсолютного бытия. Западноевропейское мироощущение—иное, можно сказать, обратное этому. Здесь человек очень слабо заинтересован в абсолютной действительности. Он сам для себя абсолютная действительность. Для абсолютной объективной действительности он может оставить (да и то не всегда охотно) разве только чисто идейную, смысловую сторону. Западноевропейский человек рассуждает так: «Есть ли Бог или нет, не знаю, да и едва ли могу знать; есть ли природа или нет, тоже не знаю и тоже, пожалуй, не могу знать; да, наконец, существую ли я сам в действительности, тоже мне не очевидно. Но я знаю одно: если есть Бог, то он должен быть мыслим вот как; если есть природа или материя, то я должен эти понятия мыслить вот как; и т. д. Весь вопрос в том, как мыслить эти понятия. Даже больше того. Вот я установил, как надо мыслить эти понятия. Но я при этом не только хорошо знаю, что люди мыслили эти понятия далеко не всегда так, как я, но знаю и то, что и в будущем подобных теорий окажется еще бесчисленное количество. Где же тут абсолютная истина и зачем она нужна науке? Науке, очевидно, она не нужна, так как реальная история науки вполне удовлетворяется чисто временными гипотезами, а, кроме того, есть ли на самом деле абсолютная истина, нам неизвестно, да и знать ее для того, чтобы существовала наука, тоже необязательно. Все сводится, таким образом, в конце концов именно к чистому функционализму вместо твердой системы абсолютно–причинных утверждений. Что является реальной причиной чего и какие силы двигают нашими формулами и осуществляют их в виде абсолютно существующей действительности, мы не знаем, едва ли можем знать, и знать–то необязательно. А вот установить вместо причинных связей связи чисто смысловые, т. е. ввиду своей бесплотности ставшие связями чисто функциональными, — это в нашей власти, это мы можем, и этого достаточно для науки». Пусть такое рассуждение не всеми и не везде проводится. Пусть Кант, неокантианцы, Мах и др. подходят к формулировке этих мыслей ближе, а другие мыслители меньше. Все равно подобное рассуждение—душа западноевропейской философии науки. При всех абсолютистских навыках рядовых ученых—это внутренняя сущность всего отношения капиталистического, романтического, инфинитезимального и вообще западноевропейского духа и науки. Под этим лежит недоверие [к ] объекту, незаинтересованность в реальных и объективных абсолютах, доверие только современной мысли данного момента, т. е. абсолютный и безраздельный индивидуализм и субъективизм. Захолустная малоразвитая мысль наивно убеждена в абсолютности научных «законов природы», в их полной непреложности и каком–то божественном всемогуществе. На этом захолустье основано было целое «философское» мировоззрение под именем материализма, справедливо заслужившего и справа, и слева презрительную кличку «вульгарного» материализма. И хотя это захолустье очень популярно среди подобных представителей науки, все равно оно разоблачено давным–давно; и всякому философски мыслящему ясно, какие анимистические корни подобного мировоззрения, и ясно, что под «законами природы» тут мыслятся чисто демонические силы, являющиеся предметом всякой древней механики. Чистая научность, не богословская, не мифологическая, научность ради научности — этот один из наиболее оригинальных плодов западноевропейского капиталистического и субъективистического духа, — эта научность, конечно, есть только чистый функционализм, бесплотный и скептический, ни в чем как следует не уверенный, верящий только себе самому, да и то относительно, на время, готовый каждую минуту все изменить в корне. Именно такова и есть реальная история науки. Самому «абсолютному» и самоуверенному ньютонианскому мировоззрению хватило здравствовать только немногим больше двухсот лет. Все же прочие теории летят как бабочки, протягивая какие–нибудь месяцы, годы и самое большее—десятки лет. Не веря ничему и никому, во всем сомневаясь, отрицая всякие абсолюты, на чем зиждется такое функционалистическое мировоззрение? Ведь и себе–то самому оно верит, как сказано, только относительно, только на данный момент и только в смысле установления чисто мыслительных схем. Ясно, что такое мировоззрение, для которого все—только гипотеза, а не абсолют, дорожит этой гипотезой не ради достижения абсолютной истины. Оно ставит данную гипотезу, по его мнению, в данный момент максимально соответствующую «фактам» и «действительности», — только для того, чтобы ее проверять и критиковать. Он будет очень рад, если эта гипотеза будет перевернута вверх ногами и заменена новой. И эта новая будет иметь ту же участь в истории науки, что и прежняя. Следовательно, чем же живет и на чем зиждется такой функционализм, на что он надеется и каковы его интимные потребности, интимная и насущная цель существования? Ясно, что единственная потребность и цель, единственная интимная сущность и оправдание такого абсолютного функционализма — это все тот же вечный и бесконечный процесс, вечное и неустанное движение от одного пункта к другому, напряженное стремление в бесконечные и неведомые дали. Только так и можно понять это странное мироощущение, скептическое и щепетильное, болезненно–субъективистическое и субтильно–логическое. Такой дух живет исканием и стремлением. Его интересует самый процесс искания и стремления. И вот почему эта идея так упорна в новоевропейской философии. Ее можно рассмотреть там, где с первого взгляда о ней нет и помину и где как будто бы совершенно иная и методика, и терминология. Об этом, однако, должен идти разговор в специальном историко–философском труде. Оторвавши смысл от бытия, освободивши идею от субстанциональности, превративши густое и тяжелое бытие в легко подвижную, утонченную и изощренную мысль, западноевропейский функционализм создал себе целое царство мысли, какого–то фантастического разума, где утонченность, субтильность, капризная сложность математического исчисления соперничают с размахом, лихорадочными темпами и энтузиазмом великих исканий и постижений. Западноевропейская математика, освободивши себя от всякой грузной жизненной интуиции и даже сбросивши с себя оказавшийся слишком тяжелым груз человеческих интуиций, эта математика удалилась в царство невообразимых абстракций, головокружительных операций над фантастическими вымыслами, в изобретение и создание таких конструкций, которые не представимы никакой интуицией и не охватываемы никаким наглядным образом. Мало того, что был изгнан всякий геометризм из арифметики и алгебры—в противоположность античной традиции, мало того, что самая геометрия стала пониматься арифметически и алгебраически, так что Декарту пришлось создавать в первой половине XVII в[ека] т. н. аналитическую геометрию. Мало всего этого. Эта самая геометрия настолько превратилась в абстрактную игру абстрактных понятий, настолько оторвалась от всякой жизненной интуиции, что стала возможной геометрия любого числа измерений; и всякая такая геометрия выводится чисто абстрактно, не зависимо ни от каких интуиций и наглядных представлений. Функционализм, оторвавши числовое представление от бытия, сделал возможным и бесконечные полеты, самозабвенный экстаз разумных и рассудочных построений математики, и он же облегчил это никогда не угасавшее на Западе стремление к тончайшей инкрустации мысли, к капризнейшей отточенности числовых конструкций, к поражающей субтильности всего математического исследования[226]. Античность и Средние века по сравнению с этим—наивны, статичны, целомудренно–устойчивы, связаны своими глубочайшими корнями с бытием, которое они мыслят как абсолютное. И тут не может быть такого фантастического разгула мысли. Тут больше деловитости, трезвости, уравновешенной расчетливости и серьезности. Итак, функционализм вырастает на той же почве субъективизма, что и понятие бесконечно–малого. Обе эти категории появились в результате отрыва от абсолютных и объективных установок; оба они питаются субъективистическим рвением в необозримую и таинственную даль, стремясь, одно — отбросить субстанцию и тяжелую материальную фактичность действительности, а другое—в достигнутой таким образом чисто смысловой сфере погрузиться в неустанную погоню за вечно уплывающей из рук умственной бесконечностью. Естественным должен быть вопрос: не объединятся ли как–нибудь эти две фундаментальные категории—функция и бесконечно–малое? Неужели их не объединил тот общий дух, который их породил? И неужели он не объединил их с целью усилить действие каждой из них? Вполне естественно ожидать, что эти две функциональные категории сплотятся вместе и создадут зрелище, небывалое по силе, своеобразию и красоте. Да, это именно и произошло в XVII веке, когда появилось дифференциальное и интегральное исчисление, основанное как раз на анализе функций бесконечно–малых приращений независимого переменного. Математический анализ и есть это объединение учения о функциях с учением о бесконечно–малом. И тут перед нами начнут вырисовываться уже конкретные контуры этой замечательной науки. Чтобы закрепить достигнутое нами понятие функции (на пороге исследования самого математического анализа) в виде обычной диалектической тройственности принципов, скажем так. Переменное, взятое безотносительно и самостоятельно, переменное в себе есть независимое переменное. В математике его называют аргументом и обозначают через х. Переменное, взятое как противоположность независимому переменному, есть зависимое переменное и обозначается через у. Этот у указывает на то, что есть какая–то зависимость между ним и х. Но это ведь есть не только какая–то зависимость или зависимость вообще, но и конкретная форма зависимости. Иначе и быть не может. Поскольку независимое переменное есть нечто определенное, постольку, входя в объединение с зависимостью от него другого, переменного и осуществляясь в качестве именно аргумента, оно должно и абстрактную зависимость превратить· в такую же определенную и конкретную зависимость. Это–то и есть функция в собственном смысле слова и обозначается в математическом анализе так: y=ƒ(x) Чтобы перейти теперь к исследованию форм объединения понятий функции и бесконечно–малого, вспомним, чтобы не сбиться, еще раз диалектическую последовательность наших мыслей. Сначала мы обследовали величину как таковую. Сюда вошло учение как о непосредственно–значащих величинах — арифметических, — так и учение об опосредствовании этих величин в форме непрерывности, прерывности и предела. Это обобщение учения о величине завершилось синтезом числа как непосредственного и как опосредствованного бытия—в форме учения о бесконечно–малом. Теперь все рассуждение о понятии функции заставило нас совсем покинуть область величин и непосредственных, и опосредствованных, и синтетических и перейти в противоположную область—отношений между величинами (а не самих величин), в область функциональных отношений. Естественно возникает потребность объединить эти две области— величин (чисел) и функций. Тут–то и возникают понятия производной, дифференциала и интеграла. 7. Производная. Итак, отныне мы находимся всецело в области функций. Кроме того, эти функции мы пополняем содержанием, основанным на понятии бесконечно–малого. Следовательно, имеется независимое переменное, погруженное[227] в стихию бесконечно–малого становления, и имеется зависимое от него переменное, тоже, очевидно, как–то связанное с процессом бесконечно малого становления. И возникает вопрос: что же делается с этим зависимым переменным, с функцией, и какую форму принимает это отношение аргумента к функции. Когда берется функция y=ƒ(x) то ясно, в каком отношении находятся χ и Пусть имеется у=х2+1: ясно, что нужно сделать с jc, чтобы получить у. Но вот χ ушел в становление, погрузился в бесконечный процесс стремления, ушел в бесконечную даль, и—спрашивается: что же сделается с зависимым от него у, в каком положении очутится этот становящийся χ к становящемуся у? С самого начала ясно, что это будет совершенно иным отношением, чем то отношение, в котором находились между собой хну, когда они покоились на месте, были просто арифметическими и алгебраическими величинами и не погружались в стихию алогического становления. Рассмотрим теперь, что же это за отношение и что тут нового по сравнению со статическим значением величин. Итак, изменяется аргумент, изменяется в зависимости от него и функция. Употребляя традиционные обозначения математического анализа, мы получим следующее. Если x —аргумент, ∆х будет приращением аргумента x. В зависимости от этого функция у тоже будет нарастать; обозначим приращение функции через ∆у. Чтобы узнать, какой вид примет наращение функции, возьмем приращенную функцию ƒ(x+∆x) и вычтем из нее первоначальную функцию y=ƒ(x). Получаем: ƒ(x+∆x) — ƒ(x). Это есть то наращение, которое происходит в функции, когда получается наращение аргумента ∆х Следовательно, если y=ƒ(x) ТО ∆y=ƒ(x+∆x) — ƒ(x) и, беря отношение обеих частей этого равенства к Δχ, мы получаем Это и есть математческое выражение того нового отношения, в которое вступают χ и у, когда они берутся не сами по себе, не статически, но когда они погружаются в процесс становления, т. е. начинают нарастать или убывать. Это рассуждение (и обозначение) обычно еще не вполне достаточно, и требуется его существенно дополнить в одном пункте. Именно, нас ведь интересуют не приращения вообще, но бесконечно–малые приращения и не процесс вообще, но именно алогическое становление. Мы раньше уже видели, что в понятии бесконечно–малого дано не просто изменение величины, но изменение самого изменения, становление изменения, почему оно не просто налично тут как таковое, но оно дает все меньшие и меньшие результаты, оно все меньше и меньше оказывается изменением. Сама категория изменения тут, очевидно, вовлечена в становление. И только при этом условии переменная величина может быть бесконечно–малой. Она должна иметь своим пределом нуль—только тогда она действительно бесконечно мала. Применяя это к нашему рассуждению, мы должны ∆х считать бесконечно–малым. ∆х должно стремиться к нулю, оно должно иметь своим пределом нуль. Но тогда существенно меняется вся картина выставленного выше отношения . Именно, Ах становится все меньше и меньше. Соответственно и Δу должно становиться все меньше и меньше. Чтобы конкретно представить себе новые значения аргумента χ в связи с уменьшающимся приращением ∆х, вычислим соответственно новые значения функции, уменьшающиеся приращения функции, а также и отношение мы получим примерно след. табличку. Начальное значение X Новое значение Приращ. Δy ННачальное значение У Новое Приращ. Δу     X     значение             у     3 4 1 10 17 1 7   3,9 0,9   16,21 6,21 6,9   3,8 0,8   15,44 5,44 6,8   3,7 0,7   14,69 4,69 6,7   3,6 0,6   13,90 3,90 6,5   3,001 0,001   10,006001 0,006001 6,001 Пусть у нас имеется функция у = х2 + 1 и пусть начальное значение x: будет 3. Тогда начальное значение у=32+1 = 10. Возьмем теперь какое–нибудь новое значение x, напр. 4, тогда y =42+1 = 17. В первом случае приращение будет Δ.γ = 4 — 3 = 1, во втором случае приращение будет ∆у— 17— 10 = 7. Следовательно, = =7. Будем теперь постепенно уменьшать Δx, придавая ему значения 0,9; 0,8; 0,7 и т. д. Соответственно будет меняться χ и также у, а стало быть, и . Мы действительно видим, что принимает все меньшие и меньшие значения: 7; 6,9; 6,8; 6,7 и т. д. Спрашивается: до каких же пор будет это отношение уменьшаться? ∆х стремится к нулю. К чему же стремится ? Чтобы ответить на этот вопрос, представим вышеприведенное выражение — при помощи данной формулы у=χ2 +1. Именно, взявши приращенную функцию, получаем: у+∆у=(х+∆х)2+1 = χ2 + 2χΔχ+(Δχ)2 +1, откуда ∆у = х2 + 2х∆х + (∆х)2+1—(х2 +1) = =χ2+2χΔχ+(Δχ)2+1 — χ2 — 1 = 2х ∆х+(∆х)2. Следовательно, Итак, чтобы судить о том, к чему стремится, достаточно полученное выражение 2х+∆х взять в пределе, т. е. в условии стремления ∆х к нулю. Очевидно, если Ах стремится к нулю, то стремится к 2х, так как ∆х, как стремящееся к нулю, стремится просто отпасть. Значит, если начальное значение аргумента χ у нас было 3, то предел отношения будет равен, очевидно, 2–3 = 6. И действительно, просматривая в нашей табличке значения , мы видим, что оно постепенно уменьшается, но не становится меньше 6. Если бы мы взяли, напр., ∆х = 0,001, то, как показывает вычисление, оказалось бы равным 6,001. Легко проверить это, подставляя все меньшие и меньшие ∆х и получая отсюда все меньшие и меньшие , но не становящиеся меньше 6. 6—это предел, Δχ к которому стремится если брать функцию у=х2+1 при начальном значении х=3. На этом простейшем примере отчетливо видно, какую форму приобретает взаимоотношение χ и у, когда оно начинает действовать не само по себе, но в своем инобытии, в своем становлении, когда они сплошно и неизменно растут или вообще меняются. Предел этого отношения , когда ∆х стремится к нулю, и есть производная, т. е. функция, «произведенная» от у, которую называют первообразной функцией. Следовательно, производная данной функции есть предел отношения приращения этой функции к приращению аргумента, когда это приращение аргумента стремится к нулю как к своему пределу. Не будем забиваться в абстрактные дебри, как это любят делать математики, давая это понятие в дифференциальном и интегральном исчислении. Также недостаточны для понимания производной и те геометрические и механические привнесения и толкования, которыми математики уснащают свои руководства, думая на них конкретизировать это отвлеченное понятие. Надо, однако, еще до этих применений и толкований научиться понимать эту замечательную категорию, понимать всю ее жизненную и, следовательно, философскую конкретность. Что такое производная? Для понимания этой основной категории математического анализа надо с максимальной отчетливостью представить себе разницу между бытием и инобытием или, точнее, между бытием и становлением. Если эта разница усвоена нами с достаточной отчетливостью, тогда необходимо достигнуть четкости еще в представлении того, как совершается стремление к пределу. Если эти две вещи усвоены, то логический состав производной будет ясен сам собой. Что такое становление? Его удобно можно обрисовать путем противопоставления голому бытию (или голой идее[228]), по сравнению с чем оно действительно есть резкая противоположность. Бытие есть прежде всего нечто оформленное и устойчивое; становление бесформенно стремится вперед. Бытие — царство раздельности, координированности; становление же есть алогический процесс, в котором все отдельные моменты сливаются в одну неразличимую непрерывность. Арифметика оперирует с числами вне всякой их процессуальности. Для нее они — вечные, незыблемые идеи, предстоящие в виде некоей картины, и считающий только выбирает из этой картины то одни числа, то другие. Алгебра и элементарная геометрия, не оперируя с арифметическими числами, все же, вполне на манер арифметики, оперируют со своими величинами опять–таки чисто статически. И только в анализе дана чистая стихия становления, чистое алогическое становление, в котором тонет всякая раздельность, затухает всякое оформление и совершается уход в бесконечную даль, к неохватным горизонтам. Идеи, числа, вещи, взятые как неподвижные, статические, вечные структуры, предстоят как определенным образом связанные между собой, предстоят в некоем конкретном взаимоотношении. Будучи же погружены в стихию становления, они в корне меняют свое взаимоотношение; оно становится неузнаваемым, хотя мы и должны уметь выводить это их алогически–становя–щееся взаимоотношение из их логически–неподвижного взаимоотношения. Вещи, идеи, числа—все, что мыслится и существует, — одним образом взаимосоотносится, когда берется в чистом и непосредственном виде, и совершенно другим способом взаимосоотносится, когда уходит в алогическое становление и растворяется в нем. Итак, это первое и самое главное в производной: производная есть взаимоотношение величин, перешедших в алогическое становление. Второе, очень важное обстоятельство заключается в том, что производная содержит в своем логическом составе момент предела. Что такое предел, об этом уже говорилось выше. Однако ни на минуту нельзя упускать из виду всего своеобразия этой богатой категории — предела и надо уметь учитывать его в общем логическом составе производной. Схематически эту ситуацию можно представить так. Аргумент х, погрузившись в становление, меняется, движется — в бесконечность. Зависящая от него функция у, погрузившись в становление, тоже все время меняется, движется—до бесконечности. Теперь, отношение между этими двумя, бесконечно становящимися величинами есть тоже величина переменная; оно тоже все время меняется, движется и—тоже до бесконечности. Это очень важно все время учитывать и иметь в виду. Производная все время меняется, движется, становится. Производная тоже пребывает в становлении, она в каждый новый момент взаимоотношения становящегося аргумента и функции—все новая и новая, все иная и иная. Но только это становление производной не какое–то вообще, а вполне определенное, так как ведь и аргумент, и функция есть тоже вполне конкретная определенность и таковыми они и вступают в стихию становления. Но какая же может быть определенность в становящейся величине? Определенность становления аргумента χ продиктована самим аргументом л:; она выражается через х+Ах. Определенность становления функции у опять–таки продиктована определенностью самой функции; эту нарушенную функцию мы найдем в выражении у + Ау. Но от чего зависит определенность становления производной? Она ведь потому–то и называется производной, что она не самостоятельна, а всецело зависит от поведения в инобытии аргумента χ и функции у. Вот предел, к которому стремится , и есть то, что дает производной определенность и указывает на ее определенную закономерность. Отдельные с этой точки зрения еще не есть сама производная, а как бы только подготавливают ее, стремятся к ней. В настоящем смысле производная возникает только тогда, когда все эти отдельные получают особую структуру, как некий ряд, как некая последовательность. Это и совершается тогда, когда ряд этот получает предел. И производная, находя в каждом отдельном свое приближенное выражение, оказывается в точном смысле производной именно тогда, когда она есть предел этого отношения . С этой точки зрения производную необходимо понимать как закон инобытия идеальной взаимозависимости. Когда дана функция сама по себе, y=ƒ(х), и не ставится никакого вопроса о становлении л: и у, то все действия происходят тут в области чисто идеальной, неподвижно идеальной. Когда χ и у перешли в становление, они вышли за свои собственные границы и перешли из своего бытия в свое инобытие. Какой же закон существования этой идеальной взаимозависимости, когда она перешла в свое инобытие? Ответ: этот закон существования идеальной взаимозависимости в инобытии к себе самой есть производная. По ней мы видим, как ведут себя идеальные вещи в инобытийно–реальном становлении и какова структура и внутренняя связь, царящая в этом инобытийном поведении. Здесь перед нами еще раз появляется воочию тайна западноевропейского мироощущения, покинувшего идеальную действительность абсолютов и погрузившегося в непроглядную тьму становления и вечных исканий. Когда действительность мыслилась и переживалась в своей абсолютно–объективной, личностно–самостоя–тельной субстанциальности, тогда не было особенных причин уходить в становление, а были все причины пребывать в собранном и целомудренно–уравновешенном состоянии. Когда же все объективное бытие было зачеркнуто и человеческий субъект стал усиливаться в самом себе и притом из самого себя исходить все быстрее, тогда, по невозможности физически обнять бесконечную вселенную, волей–неволей пришлось устремиться в вечное искательство и расслоить спокойное обладание истиной на бесконечное и беспокойное ее достижение. Тогда и возникла непреодолимая потребность, своего рода метафизическая страсть созерцать, наблюдать, изучать и фиксировать не устойчивые структуры природы и духа, но их становящуюся стихию, не числа и вещи в их законченном стройном бытии, но числа и вещи в их бесконечно стремящемся инобытии. И так как нельзя же было настолько погрузиться в становление, чтобы потерять всякую мысль и расстаться с самой способностью расчленять, обобщать и теоретизировать, то и были созданы такие методы мысли, которые бы максимально соответствовали алогически–становящемуся бытию, и такая математика, которая, сохраняя свою точность и четкость форм, говорила бы не о стройном и законченном архитектурном целом, но о вечно рвущемся, вечно бесконечном стремлении. Производная и есть эта точная, четкая, максимально–логическая форма и метод мысли для познания всегда неточного, всегда спутанного и нечетного, максимально алогического становления и изменения. В этом вся ее тайна. И в этом ее совершенно своеобразный культурно–исторический строй; и, можно сказать, в этом — метафизическая страсть, владевшая и владеющая всеми, кто мыслит и действует инфините–зимально, кто мыслит и действует как вечно стремящийся и никогда ненасытный Фауст. 8. Дифференциал и интеграл. Вся рассмотренная нами до сих пор картина осуществлялась между величинами χ и у. Мы отметили три особых момента: Δу, Ах и у\ связывая их одним отношением[229]. =y' Что такое χ и dx, этого мы сейчас можем и не разъяснять, так как χ это есть просто независимое переменное, a dx—то его приращение, в силу которого оно вступает в процесс становления. Так как здесь идет речь о независимых величинах, о произвольных величинах, то, очевидно, весь наш интерес должен относиться к тому, что от них зависимо, и к самой форме этой зависимости. Общее понятие нам также известно. Но уже это dy может получить более точное определение из соответствующего видоизменения вышеданной формулы производной. А именно, из нее вытекает, что dy=y'dx. Иначе говоря, оказывается, что о dy можно судить на основании у' и dx, т. е. приращение функции зависит от производной и от приращения аргумента. Здесь, однако, необходимо соблюдать более точный способ рассуждения и выражения, и мы получаем понятие дифференциала. Прежде всего dx, приращение независимого переменного, стремящееся к нулю, в отличие от Ах, от приращения, вообще называется дифференциалом независимого переменного. Дифференциал аргумента есть, следовательно, бесконечно–малое его приращение. Соответственно необходимо проводить различие и между приращениями функции. Когда растет аргумент, соответственно растет и функция; и в общем случае, когда не становится вопрос о характере этих приращений, приращение функции мы обозначаем через Δy. Однако нас интересует именно бесконечно–малое наращение аргумента. Тогда соответственно получит специфическую окраску и приращение функции. Вот это–то приращение функции в условиях бесконечно–малого нарастающего аргумента и называется дифференциалом функции; и оно есть произведение производной на бесконечно–малое приращение аргумента (т. е. y'dx). Но и в этом определении еще не выявляется с полной отчетливостью и выпуклостью смысловая структура дифференциала. Это определение есть ведь не что иное, как перефразировка логических моментов, входящих в понятие производной. Чтобы выявить наружу этот скрытый принцип дифференциала, представим себе процессы, дающие производную, более подробно. Если разница стремится к нулю и есть величина бесконечно–малая, то, обозначая ее через ε, получаем Левая часть этого равенства есть общее приращение функции Ау. В правой же части f'(x)dx есть, по предыдущему, дифференциал функции, dy. Стало быть, это равенство можно переписать так: ∆y = dy + edx, т. е. общее приращение функции отличается от дифференциала функции на величину edx. Если отдать себе строгий отчет в этой величине, то станет ясным и все отличие приращения функции от дифференциала функции. Что такое zdxl dx есть бесконечно–малое приращение аргумента, равно как и ε—тоже бесконечно–малое. Умножение одного на другое дает, очевидно, бесконечно–малую величину высшего порядка, чем просто dx. Бесконечно–малое высшего порядка есть то, которое имеет высшую малость, т. е. такое, которое мельче другого бесконечно–малого, zdx мельче, чем просто dx. Но так как dy—f'(x)dx есть бесконечно–малое первого порядка (поскольку f'(x) есть какое–нибудь число, не равное нулю), то edx мельче, чем f'(x)dx, и, следовательно, обсуждая ∆у, этой величиной можно пренебречь. Поэтому практически вместо ∆у достаточно оперировать с dy, т. е. общее приращение функции можно заменять ее дифференциалом, хотя это и разные вещи. Таким образом, можно сказать, что производная есть предел отношения двух дифференциалов — функции и аргумента. После этого мы можем перейти и к понятию интеграла. Производная показывает нам, что делается с функцией, когда она погружается в стихию становления. Расплываясь по морю этой бесконечности, мы можем и совсем забыть то, с чем мы вошли в это море. Но мы можем и помнить, можем вспоминать то идеальное неподвижное, статически–числовое, что оставили мы на берегу. И когда мы вспоминаем, мы невольно вносим какую–то устойчивость в наше становление, начинаем видеть сквозь мглу становления контуры оставленной темы, статической идеи—правда, теперь уже сильно деформированной и часто принимающей совершенно неузнаваемый вид. Это инобытийно–деформированная функция, пребывающая в этом деформированном виде неизменной среди непрестанного потока бесконечности, и есть производная. Однако мы можем задаться и другой задачей. Мы можем в своем сравнении инобытийной функции с первообразной останавливаться не только на инобытийной [функции], но и на первообразной. Можно не только первообразную функцию рассматривать в сфере инобытия и—получать производную, но можно и производную рассматривать в сфере первообразий и — получать эту самую первообразную. И как первообразная претерпевает деформацию при переходе в инобытие, так и производная претерпевает деформацию при переходе из инобытия в бытие. Тот и другой процесс, конечно, являются взаимообразными. И принципиально должно быть ясно, что если мы сумеем переходить от «первообразного» бытия к «производному» инобытию, то также (или в значительной мере так) мы должны уметь переходить и обратно, от инобытия к бытию. Вообще говоря, первообразная функция, полученная из инобытийной путем исключения инобытия, и есть интеграл. Интеграл количественно ничем не отличается от любой величины. Всякая величина может быть интегралом. Однако если употребляется такой термин, то, конечно, не для того, чтобы еще другим словом назвать то, что обычно называется величиной. Название «интеграл» указывает на происхождение величины, а не просто на самую величину в ее чисто количественном смысле. В понятии интеграла также мыслится процесс, и притом бесконечный процесс, как и в понятии производной; и это не может быть иначе, раз мы условились рассматривать не только инобытие в сфере бытия, но и бытие в сфере инобытия. В бытие тоже вносится момент инобытия, а именно бытие — в нашем случае первообразная функция — мыслится не само по себе, в своей полной непосредственности (тогда была бы просто арифметическая величина, и больше ничего), но в своем происхождении, в своей полученности из недр становящегося бытия. Каким же образом можно получить из инобытия бытие, из дифференциала интеграл? Что тут за процесс происходит? Когда мы имеем производную и, следовательно, дифференциал функции, мы погружены в созерцание бесконечного процесса и фиксируем в нем твердые контуры закона, управляющего этим бесконечным процессом. Наша новая задача заключается в том, чтобы созерцать этот бесконечный процесс не в целях фиксации закона этого же самого инобытийного процесса, но в целях фиксации функции, еще не перешедшей ни в какое инобытийное становление. Мы продолжаем рассматривать эту становящуюся стихию, но фиксируем в ней не ее собственную закономерность, но изначальную функциональную закономерность, инобытие которой и привело к этой становящейся стихии. Соответственно с этим мы уже иначе должны расценивать самый процесс становления. Когда мы искали закон инобытия, мы должны были скользить по самому инобытию, с тем чтобы пронаблюдать этот закон. В глубине этого распыления и появлялся его закон—в виде производной. В случае же, когда надо прийти к первообразному бытию, мы тоже скользим по инобытию, но, очевидно, не с целью разъединить и распылить, но с целью обобщить, так как первообразная функция перешла в производную именно благодаря распылению и становлению. Обратный процесс, следовательно, есть восстановление и объединение. Только этим путем мы можем вернуться к первообразной функции, потому что только этим путем мы и уходили от нее. Однако, как было недостаточно в первом случае видеть бесконечный процесс распыления, а нужно было еще узреть скрытый за ним и руководящий им закон инобытия (производную), так и здесь недостаточно одного простого суммирования и воссоединения распыленных моментов, а нужно стараться увидеть скрывающийся за этим закон этого объединения, закон этого суммирования, восстановляющего бытие в его первоначальной данности. Иначе мы потерялись бы в дебрях инобытия—и в первом, и во втором случае. Но что же это за закон суммирования и воссоединения? Закон становления и распыления есть предел становления и распыления. Точно так же закон суммирования должен быть определенным пределом, который бы из бесконечности четко управлял этим процессом суммирования. Ясно, что таким пределом и является наша первообразная функция, потому что из нее и начался процесс становления, к ней и должно вернуться инобытие из своего бесконечного становления. Она—предел этого возвращения, т. е. предел суммирования всего распыленного. Это она видится в глубине восстановительного процесса и скрыто им управляет. Ее мы и должны найти, созерцая восстановительные пути инобытия. Отсюда, интеграл есть, очевидно, предел суммы всех дифференциалов. Или, говоря пространнее, это есть предел бесконечно–большой суммы всех бесконечно–малых приращений функции. Тут мы получаем уже более четкое определение интеграла, которое мы не можем получить, понимая интегрирование как действие, обратное дифференцированию. Только в определении интеграла как предела суммы всех дифференциалов мы обнаруживаем истинную восстановительную и синтетическую природу интеграла. Трактование интегрирования как действия, обратного дифференцированию, хотя оно вполне точно, не обладает такой выпуклостью, которую дает определение через суммирование. К этому определению интеграла должно быть сделано несколько примечаний. Прежде всего, как в анализе понятия производной, так и здесь мы должны получить основную стихию, в области которой разыгрываются эти понятия. Это — стихия становления, алогического становления, где мы находим полную неразличимость всех отдельных моментов, хотя они и даны как внеположные. Трактуя о бесконечно–малом, мы выдвигаем на первый план эту идею бесконечного процесса, где все отдельные моменты слиты в единый неразличимый поток. То же самое мы всегда должны помнить и в применении к интегралу. Интеграл также содержит в себе стихию алогического становления, и в нем также отдельные моменты этого процесса слиты в один внутренне безразличный поток. Правда, значимость этого потока здесь иная, но самый процесс, его алогичность тут одни и те же. Какой бы раздельной величиной ни являлась данная величина, все равно, раз она интеграл, она мыслится перекрытой стихией алогического становления и видится и сквозит через данную стихию как ее предельный контур. Далее, необходимо заметить, что предыдущее определение интеграла есть, в сущности, определение того, что обычно называется «определенным» интегралом. Если мы просто напишем, как это понимается всегда, ∫ƒʹ(x)dx=ƒ(x) то тут утверждается: ƒ(x) есть производная функции ƒ(x) и ƒ(x)dx есть ее дифференциал; интеграл же от этой функции и есть сама первообразная функция y=f(x). В этом способе выражения на первом плане стоит понимание интегрирования как действия, обратного дифференцированию. Однако если мы выдвинем на первый план момент предельного суммирования, то ясно, что это суммирование предполагает определенные пределы, в которых совершается данное суммирование. Тут имеется в виду процесс, который в общем можно обозначить так: ∫ƒʹ(x)dx=ƒ(b)-ƒ(a) Тут имеются два соседних значения функции f(a) и f(b), между которыми и происходит процесс суммирования бесконечно–малых приращений. Этот процесс можно изобразить при помощи суммирования бесконечного количества таких разниц: ƒʹ(b1)-ƒʹ(a);ƒʹ(b1)-ƒʹ(b2); ƒʹ(b3)-ƒʹ(b2)и т. д. Но ясно и так, что этот процесс разыгрывается между значениями а и b, в пределах между а и b, и что только в этом случае процесс суммирования получает законченную форму. Такой интеграл, который является результатом суммирования в определенных пределах, называется определенным интегралом в отличие от интеграла, не содержащего этих пределов и носящего название неопределенного интеграла. Ясно после этих разъяснений, что, хотя в обычных руководствах по анализу изложение начинается с неопределенных интегралов, логически, а также исторически первенство остается за понятием определенного интеграла. И только игнорирование интеграла как результата суммирования и выдвижение на первый план интеграла как результата взаимообразного действия с дифференцированием приводит к тому, что целесообразным считается начинать именно с неопределенных интегралов. В заключение этого параграфа полезно подвести диалектический итог учению о приращениях и связанных с этим понятий дифференциала и интеграла. Во–первых, после предыдущего рассуждения должна быть ясна такая тройственная последовательность. Если мы возьмем функцию саму по себе, у =ƒʹ(x), т. е. функцию в ее непосредственном бытии, то антитезой к ней будет, очевидно, переход ее в инобытие, в становление. Инобытийное становление для функции, как и вообще для всего, есть система бесконечно–малых приращений. И следовательно, если функция в себе есть тезис, то диалектическим антитезисом, отрицанием ее будет функция вне себя, функция в области нарастающего становления. Но тогда синтезом функции в себе и функции вне себя будет, очевидно, функция как интеграл, потому что в функции как интеграле дана, во–первых, она сама и, во–вторых, дано перекрытие ее суммой всех ее бесконечно–малых наращений. Функция—тезис, ее наращение, дифференциал — антитезис, интеграл—синтез. Далее, можно диалектически расчленить и среднюю область из только что указанных, область дифференциала. Тут мы имеем 1) приращение аргумента Ах, 2) приращение функции ∆у и 3) предел их взаимоотношения=y' производную, или -1) дифференциал аргумента, 2) дифференциал функции и 3) производную. Таким образом, получается следующая резюмирующая диалектическая схема. 1. Функция в себе, y=f(x). 2. Функция вне себя. Ее становление: a) дифференциал аргумента, dx, b) дифференциал функции, dy, c) производная =у'. 3. Ставшая функция — интеграл ∫y´dx=ƒ(x). III. ДИФФЕРЕНЦИАЛbНОЕ И ИНТЕГРАЛbНОЕ ИСЧИСЛЕНИЕ. ИХ ЛОГИЧЕСКИЙ СОСТАВ 1. Дифференциальное исчисление. Теперь мы знакомы со всеми основными категориями исчисления бесконечно–малых, и теперь мы можем наметить основную структуру и двух главных наук, из которых и состоит математический анализ, — дифференциальное и интегральное исчисления. Начнем с дифференциального исчисления. Сумбур, царящий в обычных изложениях этой науки, когда в одну кучу валится ряд почти не связанных между собой проблем, заставляет с особенной тщательностью и критикой относиться к реальному содержанию того, что мы тут находим. Отбросим то, что обычно называется «введением в анализ», эту смесь алгебры, геометрии, тригонометрии, анализа и многих других вещей; к тому же основные категории этого введения рассмотрены нами в предыдущем изложении. Далее, отбросим всякие геометрические и механические приложения, которые — в порядке системы — занимают место именно приложений, а не центрального содержания науки. Наконец, отбросим и всю технику доказательств и вычислений и сосредоточимся только на существенном содержании центральных положений науки, выставляя на первый план логическую связь и последовательность развития существа дифференциального исчисления. Общее содержание этой науки, если отбросить все приложения, все детали и всю технику демонстрации, представляется в виде следующих трех проблем. Прежде всего, первая большая проблема и первый большой отдел дифференциального исчисления — это само дифференцирование функций. Чтобы внести ясность в структуру этого отдела, необходимо четко формулировать, во–первых, процесс самого дифференцирования, во–вторых же, классификацию функций. Что касается первого вопроса, то общая формула дифференцирования является не чем иным, как развитым приложением самого понятия производной. Так как дифференцировать функцию — значит найти ее производную, то ясно, что процесс дифференцирования может состоять только из последовательного приложения элементов, входящих в самое понятие производной. В развитой форме это дифференцирование представляют в виде четырех приемов: 1) к аргументу и функции присоединяется приращение — y=ƒ(x) y+∆y=ƒ(x+∆x) 2) определяется отсюда приращение функции — ∆y=ƒ(x+∆x)-y ∆y=ƒ(x+∆x)-ƒ(x) 3) берется отношение приращений ∆у и ∆x 4) происходит переход к пределу, считая, что ∆х стремится к 0. Отсюда — Таков в общей форме процесс всякого дифференцирования. Правда, этот общий прием не всегда удобен, но об этих деталях говорить не будем. Что же касается вопроса о классификации функций, которая только и может внести логический стройный порядок в этот отдел дифференциального исчисления, то и этого вопроса в данном месте касаться не стоит. Вопрос о классификации функций отнюдь не такой легкий, как это представляют себе математические руководства. Легкость достигается тем, что обычно перечисляют только простейшие и легчайшие функции и отбрасывают более сложные, а потом начинают вводить их без всякого предупреждения. Так, неизвестно, в каком месте надо излагать гиперболические функции. Тригонометрические функции хотя и излагаются сейчас же после дифференцирования «алгебраических» функций, но неизвестно почему. Неизвестно также, что, собственно, такое «тригонометрические» функции. Обычное определение их как отношения определенных линий к радиусу круга—слишком внешнее определение; оно в сущности ничего не говорит. Уже одно выражение их при помощи числа е в известных формулах Эйлера указывает на полную их загадочность и таинственность; и не так–то просто найти их вполне существенное определение. Эллиптические функции справедливо отнесены в отдел теории функций комплексного переменного. Но положение самого этого отдела в системе анализа совершенно неопределенно. Казалось бы, естественно было бы излагать функции комплексного переменного вслед за рациональными и иррациональными функциями, поскольку само понятие комплексной величины есть неограниченное завершение понятия величины вообще. Тем не менее ни в дифференцировании, ни в интегрировании функций обычно этих функций не помещают, а помещают их почему–то в отдел «аналитических» функций, причем опять невозможно разобрать, что такое аналитические функции. С одной[230] стороны, аналитические функции комплексного переменного поставлены в ближайшую связь. С другой стороны, оказывается, что аналитические — это все вообще функции (так как аналитические—те, которые дифференцируемы). И т. д., и т. д., и т. д. Вся эта неразбериха, не свидетельствующая о логической силе математиков, требует кропотливого анализа, который невозможно провести здесь, не удаляясь далеко в сторону, хотя только логически стройная классификация функций и могла бы внести порядок и последовательность в рассматриваемый отдел дифференциального (и соответственно—интегрального) исчисления. Сюда же относится, конечно, дифференцирование неявных функций, нахождение частных производных и производных высшего порядка. Это естественно вытекает из самого понятия дифференцирования. Второй большой отдел дифференциального исчисления—это учение о рядах. Положение этого отдела в системе анализа— вполне специфическое. Ряды, конечно, нельзя помещать где попало. Логическое место их определяется тем основным обстоятельством, что ряд представляет собой инобытие производной. Если производная является образом пребывания функции в инобытии, то ряд является образом пребывания самой производной в инобытии. Если производная—тезис, то ряд есть антитезис или, вернее, такой антитезис, который воплощает в себе в инобытийном[231] порядке тезис, производную. Чтобы это понять с полной четкостью, необходимо проанализировать диалектически хотя бы один какой–нибудь ряд. Для такого примера мы и возьмем простейший ряд—ряд Маклорена. Этот ряд— состоит из двух элементов, вдвинутых один в другой, — именно из ряда последовательно данных производных, начиная с самой функции при нулевом значении аргумента, — ƒ(0),ƒ',ƒ",ƒ"', … и из разложения в ряд ех— Что такое ряд производных, у которых последовательно повышается порядок? Производная есть, как мы видели, закон инобытия той или иной идеальной взаимозависимости. Производная от этой производной, или производная второго порядка, есть переход этого самого закона в инобытие. Производная третьего порядка есть еще новый инобытийный закон этого второго закона. И т. д. Ясно, стало быть, что если производная есть инобытие функции, то ряд производных последовательно повышающегося порядка есть инобытие самого перехода функции в инобытие, инобытие самого становления, инобытийное становление становления функции в инобытии, отрицание отрицания функции в инобытии. Переходя в инобытие и порождая из себя производную, функция отрицает себя. Но, продолжая неизменно дробить этот свой переход в инобытие и тем порождать производные все более и более высокого порядка, функция отрицает свое отрицание, исчерпывает свое отрицание и тем стремится к новому утверждению — к утверждению себя в инобытии не только как становящейся, но и как ставшей. Однако этого еще недостаточно для того, чтобы действительно совершилось отрицание функции. Дело в том, что производные последовательно повышающегося порядка, взятые сами .по себе, вполне висят в воздухе; они ни к чему не прикреплены; и неизвестно, какие из них брать и как их брать. Тут утверждается только то, что вообще существуют такие производные; но на что они тут употреблены, об этом сама их отвлеченная последовательность ничего не говорит. Надо, стало быть, привязать эти висящие в воздухе ино–бытийные образы к каким–нибудь фактам, чтобы они стали не только теоретической возможностью, но и реально–субстанциальным существованием функции в инобытии, т. е. чтобы действительно получилось разложение функции в ряд. Однако привязать эти отвлеченно данные производные в целях инобытийного осуществления можно только к таким фактам, которые сами даны в становлении. В математике, в теории пределов, рассматривается одно такое тело, которое представляет собой как раз становящуюся единицу. Это именно число с. Ведь это е, которое разлагается: очевидно, представляет собой единицу, сложенную с отношением ее ко всем возможным другим числам, кроме единицы, причем эти числа уходят в бесконечность. Ясно, что число е есть не что иное, как единица, но такая единица, которая разработана и перекрыта становящимся слоем взаимоотношения ее со всем окружающим числовым инобытием. Но ведь мы должны прикрепить ряд наших производных не просто к единице, но к определенному аргументу разлагаемой функции. Функция, переходя в инобытие, перестраивает существующее в ней отношение к аргументу. И, создавая инобытие своего инобытия, она все равно должна как–то оставаться связанной с судьбой своего аргумента. Поэтому наши производные должны быть осуществлены не просто на становящейся единице, на разложении е в ряд, но на таком е, которое в себе воплощает упомянутый аргумент, которое имеет смысл этого аргумента. Потому производные объединяются с разложением в ряд ех. А это и значит, что мы получаем упомянутые два элемента, из которых диалектически состоит ряд Маклорена. Если понятна диалектическая структура ряда Маклорена, то, конечно, должен быть понятен и ряд Тейлора (путем простой замены jc на х—я), и ряд Коши (путем замены χ на приращение h). Более подробная диалектика рядов и их классификация, конечно, должны составлять предмет специального исследования. Следует заметить, что понятие ряда существенно связано с теоремой о среднем значении: ряд и есть осуществление этой теоремы. Поэтому рассуждение о рядах должно быть предварено изложением теорем Ролля, Лагранжа и Коши, составляющих, таким образом, тоже центральное содержание этого отдела дифференциального исчисления. Наконец, третья большая проблема дифференциального исчисления— это т. н. исследование функций. Данный отдел анализа обладает всеми чертами синтетической природы. Если простое дифференцирование функции дает ее производную, а ряды дают становление этой производной в инобытии, то исследование функций возвращается опять к самой функции и рассматривает ее в свете ее инобытийных превращений. В дифференцировании мы переходим от первообразной функции к ее производной, в рядах—от ее производной переходим к дальнейшим производным, поскольку они воплощают первообразную функцию в инобытии. Исследование функции возвращает наши мысли опять к конструированию функции, но не функции самой по себе, а функции постольку, поскольку на ней отражаются ее судьбы, когда она пребывала в инобытии. Самой типичной проблемой в области этого исследования является проблема minim [um]a и maxim [um ]а функции. Мы интересуемся знать, при каких условиях, в частности при каком значении аргумента, данная функция имеет наибольшее или наименьшее значение. Оказывается, что максимум и минимум функции бывает тогда, когда первая производная ее равняется нулю. Это последнее приравнение производной нулю и дает возможность вычислить искомое значение аргумента. Не нужно только подобное «исследование функций» понимать исключительно геометрически, как это часто делают. «Исследование функций» имеет значение не только для вычерчивания кривых, но и для чисто аналитического рассмотрения значения функции. Это не мешает, конечно, тому, чтобы при вычерчивании кривых по данным аналитическим выражениям с особенной ясностью и выпуклостью выступали все результаты такого «исследования функций». Так, все эти точки максимума и минимума, точки перегиба, т. н. особые точки, симметрия кривой относительно осей координат, исследование на ассимптоты и пр., — все эти моменты прекрасно иллюстрируют «исследование функций», хотя это только иллюстрация и зависит она всецело от аналитических соображений. Во всех этих проблемах вполне ясно положение всей области «исследования функций». Это то, что объединяет и синтезирует пребывание функции как исходной для своих инобытийных судеб с функцией как возвращающейся к себе из этих инобытийных судеб. 2. Интегральное исчисление. Выше мы определили интеграл как предел суммы всех дифференциалов. Другими словами, это ставшая функция, как тоже у нас указывалось. Функция уходит в инобытие, в становление. В этом становлении она исчерпывает себя и тем самым как бы заново определяется, становится и образуется, как свой собственный диалектический дублет. Уже ряды являются таким образованием и самым восстановлением функции в недрах инобытия. Но ряды дают эту функцию со всей ее инобытийной тяжестью, во всей ее субстанциальной положенности. Функция же может вместить в себе все свои инобытийные функции, не просто давая их в расчлененно–внеположном виде, но и в виде сплошной собранности и определенности. Эту роль и играет интеграл. Поясним примером. Пусть имеется какой–нибудь физический источник света, и пусть лучи этого света распространяются в окружающее его темное пространство. Когда эти лучи освещают окружающее темное пространство, инобытие, то можно брать именно это самое инобытие во всей его вещественности и можно брать только освещающие его лучи. Возьмем вещи, расположенные вокруг свечи, — книги, стулья, столы, диваны и пр. Это будет вещественное инобытие свечи, определенным образом освещенное. И свет, излучаемый свечой, мы можем взять как цельную картину всех вещей, находящихся в комнате вокруг свечи. Это значит, грубо говоря, что функцию, т. е. лучи света, мы разложили в ряд. Тут мы как бы дали синтетическую картину всех действий данных световых лучей на окружающие, инобытийные предметы. Так можно было бы понять феномен разложения функции в ряд. Совсем другое будет в данном случае интеграл. Уже в понятии «исследования функций» мы гораздо ближе вошли в существо функции, чем это возможно в случае с рядами. В «исследовании функций» мы уже возвращаемся к самой функции из ее инобытийных судеб. И если в понятии ряда возвращение функции к самой себе мыслится лишь в пределах ее инобытийной вещественности, то в «исследовании» оно дано уже как оставление этой инобытийной вещественности и сосредоточение на чисто смысловой инобытийности функции. В интеграле к этой смысловой инобытийности присоединяется функция в своей собственной субстанциальности. Если в рядах дана инобытийная вещественность, окружающая функцию, осмысленная через распластанность и как бы растянутость функции в инобытии, то в «исследовании функций» эта инобытийная вещественность уже отсутствует, а оставлена только инобытийная, но в то же время чисто смысловая растянутость и распластанность функции; эта растянутость и распластанность и является здесь предметом «исследования». Однако в «исследовании» эта чисто инобытийная осмысленность не прикреплена к самой субстанции первообразной функции, она как бы висит в воздухе; «исследуется» картина жизни функции, как результат и отголосок пребывания ее в недрах инобытийной вещественности, но вне рассмотрения судьбы самой–то функции, ее самостоятельной субстанции. Функция, взятая как таковая, как самостоятельная субстанция, и на ее фоне—смысловая картина всех ее инобытийных перевоплощений, эта функция уже не есть просто предмет того, что в анализе называется «исследованием», но это есть интеграл. В «исследовании» мы изучаем не вещи, освещенные свечой, но самый свет, ею излучаемый и получающий те или другие оттенки в зависимости от освещаемых предметов. А интеграл—это есть не только не вещи, освещенные при помощи световых лучей, но даже и не самый свет, излучаемый свечой (хотя и содержащий в себе всю реальную окрашенность вещей); это есть сама свеча, но не просто как таковая, а еще и рассмотренная с точки зрения всех световых оттенков, образующихся в результате освещения ею отражающих вещей, свет ее в своей конкретной выявленности и определенности. Таким образом, 1) ряды разложения функции, 2) исследование функции, 3) функция как предел суммирования, или как интеграл, — это есть последовательная интенсификация смысловой значимости функции, возвращающейся к самой себе из своего инобытийного самоотчуждения. Получивши понятие интеграла, мы тем самым получаем первый и основной отдел интегрального исчисления—интегрирование функций. Разделение этого отдела будет, очевидно, повторением общей классификации функций. Это классификация, которую мы провели бы в дифференциальном исчислении, она же останется и здесь, в интегральном исчислении. Поэтому единообразие структуры этих отделов математического анализа вполне обеспечено. Дальнейшим этапом упомянутой интенсификации является понятие определенного интеграла. Когда функция дифференцируется, получаемая при этом производная имеет, как мы видели, вполне определенное значение. Когда же мы производим действие интегрирования, идя от производной к первообразной функции, мы отнюдь не получаем окончательно определенной величины. Пусть, напр., дан угловой коэффициент касательной к какой–нибудь кривой и требуется найти уравнение самой кривой, т. е. пусть дана некая производная и требуется найти интеграл. Полученное в результате этого интегрирования уравнение кривой останется тем же самым, на каком бы расстоянии от центра координат мы ее ни проводили. Полученный интеграл говорит только о структуре кривой, но ровно ничего не говорит о ее абсолютном положении на плоскости системы координат. Поэтому, получая такой интеграл, именуют его неопределенным и прибавляют к нему т. н. постоянные интеграции, +с. Так, если упомянутый угловой коэффициент касательной есть 2х, то полученный интеграл имеет вид у=х2 + с. Образующаяся таким образом парабола совпадает своей осью с осью уу но в зависимости от значения с она будет пересекать ось у на том или ином расстоянии от центра. Разумеется, этих расстояний может быть бесконечное количество, и с может принимать любые значения, нисколько не влияя на структуру самой параболы. Мы можем, однако, задаться целью получить не просто параболу, но и ее абсолютное положение в данной системе координат. Другими словами, мы можем задаться получить интеграл не вообще, но в определенных пределах. Наш аргумент χ принимает в таком случае не всякие значения, какие попало, но значения лишь в данных пределах—скажем, от х—а до х = b. Тогда соответственно получается и два неопределенных интеграла—для х = а и для х — b. Если мы теперь возьмем все то, что произошло между этими пределами, т. е. возьмем разницу между этими интегралами, то уже всякая неопределенность исчезнет, и наш интеграл будет ограничен строго определенными пределами. Это и есть т. н. определенный интеграл, и обозначается он так: где а есть нижний предел, a b—верхний, и весь интеграл равен I=ƒ(b) — ƒ(a). Существует специальная теория определенных интегралов — специальный отдел интегрального исчисления. Тут трактуются вопросы о перестановке пределов, о делении промежутка интегрирования определенного интеграла, об определенном интеграле как функции своих пределов, о бесконечных пределах интеграла и о случаях прерывности подынтегральной функции, об изменении пределов в связи с заменой переменных и пр. Подобно тому как в дифференциальном исчислении, получивши понятие производной, мы могли распространить это понятие до производных высшего порядка и до частных производных, — мы можем распространить и понятие интеграла. Если возможна производная от производной, полученной тоже как производная, и т. д., т. е. если возможны производные первого, второго, третьего и т. д. порядка, то, очевидно, возможны интегралы не только вообще, но также интегралы двойные и тройные. Равным образом при наличии нескольких независимых переменных возможно и дифференцирование, и интегрирование по какому–нибудь одному переменному (и тогда прочие переменные принимаются за постоянные), т. е. возможны частные производные и частные интегралы. Кратное и частное интегрирование еще более углубляет и расширяет понятие интеграла. Этим, однако, далеко не ограничивается область интегрального исчисления. Тут, можно сказать, только начало этой сложнейшей и глубочайшей науки. В поисках дальнейшего углубления и расширения операций под интегралами мы сталкиваемся с рядом дисциплин математического анализа, которые уже требуют для себя ясного и четкого места в общей диалектической системе. Определенный интеграл есть интеграл, полученный из процесса изменения аргумента χ между данными пределами. Он несет на себе печать ограниченности области изменения аргумента. Можно еще далее усложнять получение интеграла из инобытийных судеб функции. Можно оперировать не только с производными, но и с теми или другими их модификациями в недрах инобытия. Можно идти к интегралу не просто от производной, но от производной в ее той или иной обусловленности и окружающим инобытием. Мы уже видели, что производная может переходить в свою производную, эта последняя—еще в дальнейшую, и т. д. Однако это есть не единственная инобытийная модификация производной. Можно и не переходить в чистое становление, а ограничиться чисто статическим инобытием. Так, если мы имеем х, то такое, напр., выражение, как , есть некая инобытийная модификация х, нисколько не становящаяся (в диалектическом смысле), а чисто статическая, потому что здесь дан ряд статических изменений, претерпеваемых х–ом. Точно так же и производную можно брать в ее инобытии не обязательно под формой чистого становления, а только лишь под формой статической измененности. И следовательно, может возникнуть задача получения интеграла именно при помощи такой статически–инобытийной обработанной производной. В данном случае мы имеем дело, несомненно, с инобытием производной и с инобытием в его субстанциальной положенности. И вот спрашивается: как перейти от такой статически–инобытийной положенной производной к соответствующему интегралу? Это и есть предмет 1ч>й науки, входящей в состав математического анализа, которая носит название интегрирования дифференциальных уравнений. Что такое дифференциальное уравнение и что значит—решить дифференциальное уравнение? Под дифференциальным уравнением понимается такое, которое содержит в себе дифференциалы, или производные, а решить его — значит найти такое соотношение переменных, которое бы ему удовлетворило в смысле тождества. Пусть, напр., имеется уравнение уn+у=о, где уn есть производная второго порядка от первообразной функции у. Решить такое уравнение—значит найти выражение для у, которое бы не содержало никаких производных, или дифференциалов, но содержало бы только х. Здесь мы не можем поступить так, как обычно при непосредственном интегрировании функции. Мы находим здесь вторую производную в сложении со значением первообразной функции и должны исходить из суммы этих двух функций. Дана, стало быть, определенная инобытийная переработка производной. Возьмем другое дифференциальное уравнение: (x+y)dx+xdy=0. Здесь два дифференциала даны в своеобразном переплетении с аргументом χ и с самой первообразной функцией, т. е. тут тоже определенная инобытийная переработка производной; и нужна специальная манипуляция, чтобы дать такую комбинацию χ и у, в которой бы отсутствовали всякие dx и dy. Приравнение нулю указывает на то, что инобытийная переработка производной (в данном случае — в виде двух дифференциалов) прикреплена здесь к инобытийной субстанциальности своими прочными корнями. Требуется оторваться от этой инобытийной скованности и перейти к первообразной функции, данной как чистый интеграл, несмотря ни на какую связанность производной в этом инобытии. Полученный интеграл, очевидно, будет нести на себе смысловую энергию не просто производной, но и всех ее инобытийных переплетений. Если производную мы вообще понимаем как закон реального инобытия идеальной взаимозависимости, то, очевидно, интегрирование дифференциального уравнения дает интеграл не как просто возвращение от закона реального инобытия идеальной взаимозависимости к самой этой взаимозависимости, но как возвращение к ней от тех или других модификаций и осложнений данного закона реального инобытия, от той или иной его инобытийной переплетенности с другими фактами инобытия. Таково диалектическое место интегрирования дифференциальных уравнений. Четкое понимание диалектического места этого вида интегрирования дает возможность найти такое же место и еще для одной дисциплины, входящей в математический анализ, которая в одном отношении даже выходит уже за пределы интегрального исчисления. Прежде чем ее назвать, формулируем еще раз достигнутый нами результат в диалектической интерпретации интегрального исчисления. Неопределенный интеграл есть возвращение функции к самой себе из недр своего становящегося инобытия, но возвращение пока лишь чисто структурное, пока еще лишенное абсолютно–количественной определенности. Определенный интеграл есть это же возвращение, но уже не просто в смысле структуры, а еще и, кроме того, в смысле количественном; для самопроявлений находимой структуры функции положены четкие количественные пределы. Далее—какая возможна еще дальнейшая интенсификация интегральной определенности, или, другими словами, интенсификация самой интегральности? В определенном интеграле дана определенность границ, очертания. Что может диалектически противостоять этой определенности? Конечно, — определенность того, что содержится внутри границ, внутри очерченных пределов. Это и будет инобытием той определенности, которую содержит в себе определенный интеграл. Такая определенность будет, конечно, зависеть не просто от предельных точек значения аргумента х, но, главным образом, от поведения самой производной, и притом поведения не производной как производной (это имеется в виду уже во всяком неопределенном интеграле), но производной в ее переплетении с другими моментами, дающими ей ту или другую инобытийную определенность и тем самым вносящими эту определенность в недра самого интеграла. Таким образом достигается определенность интеграла внутри его собственных границ; и если определенный интеграл возникает как определенность его количественных границ, то интегрированное дифференциальное уравнение возникает как определенность интеграла внутри тех границ, с появлением которых тоже дается сам определенный интеграл. Ясно, что обе дисциплины интегрального исчисления — теория определенных интегралов и интегрирование дифференциальных уравнений — находятся в четком диалектическом взаимоотрицании. Возникает вопрос: где же синтез этих двух видов интегральной определенности? Теория определенных интегралов дает определение границ, внешнего очертания, контура интеграла, и притом — в чисто количественном смысле. Интегрирование дифференциальных уравнений дает для интеграла определенность внутреннюю, возникающую как результат инобытийной определенности производной. В первом случае изменяется аргумент в определенных пределах, и за ним пассивно следует функция. Во втором случае не только меняется χ, но самостоятельность проявляет и сама функция, поскольку она берется не только в своей зависимости от аргумента, но и в своей внеаргументной определенности, зафиксированной «в структуре дифференциального уравнения. Значит, должен возникнуть диалектический синтез двух интегральных опре–деленностей, синтез внешнеколичественный (в смысле пределов, границ) и внутреннеструктурный (в смысле определенной заполненности упомянутых пределов). Этот синтез и дан в той науке, которую в общем виде можно назвать функциональным исчислением и которая более известна в своем частном виде под именем вариационного исчисления. Сущность вариационного исчисления базируется на расширении самого понятия функции. Сейчас мы укажем, почему в этом и надо искать формулированный только что диалектический синтез двух интегральных определенностей. Обычно в анализе мы имеем аргумент jc и зависящую от него функцию у. Меняется x, меняется и зависящая от него функция. Можно, однако, под аргументом понимать не просто х, а целую функцию и говорить, таким образом, о зависимости функции от функции. В сущности, и здесь нет ничего нового по сравнению с тем же дифференциальным исчислением, где можно найти сколько угодно зависимостей функции и где дается определенное правило дифференцирования таких «сложных» функций. И не в этом специ–фикум функционального и вариационного исчисления. Здесь имеется в виду не просто зависимость функции от функции, т. е. зависимость функции от количественного значения функции, но тут — зависимость функции от изменения вида функции, от последовательной деформации самой структуры функции. Роль аргумента принимает здесь на себя самый вид функции. Изменяется вид, структура функции, и—соответственно—меняется количествен–ное значение функции, а отсюда—соответственно—возникает то или иное значение интеграла. Когда в диалектике возникает вопрос о синтезировании границы и ограниченного, всегда ищется категория, которая бы сразу дала и охватила как границу, так и ограниченное, чтобы оба эти начала превратились в нечто цельное, неделимое и даже неразличимое. В определенном интеграле дана определенность границ интеграла в связи с определенностью области изменения аргумента. В интегрировании дифференциального уравнения дана определенность содержания интеграла в связи с определенным содержанием изменения функции. Оба эти взаимопротивоположные момента — граница и содержание—даны количественно, хотя уже в содержании, как в том, что противоположно границе, уже содержится качественный момент, предполагающийся, но не использованный как чистая качественность, а использованный пока только количественно. Стало быть, синтез теории определенных интегралов и интегрирования дифференциальных уравнений есть в сущности синтез формы и содержания, предела и определяемого, границы и ограничиваемого. Предел и граница в глубине своей есть нечто качественное, хотя и возникает ради отличения одного от другого, т. е. ради количественных противоположений. Содержание, напротив того, есть нечто количественное, поскольку оно есть результат раздробления того, что очерчено определенными границами, — хотя возникает это содержание, как нечто заполняющее данные границы, т. е. ради качественной самостоятельности. Синтез того и другого не есть уже и не качество, и не количество, а то, в чем они совпали и отожествились, т. е. структура, вид, форма, или, как Гегель сказал бы, «мера» (Maass), т. е. размеренность, измеренность, лик, лицо качества, принявшего в себя все количественные определения. Пока форма и содержание фиксируются в отдельности, им присуща количественность или незримо наличная, но диалектически еще не положенная, не зафиксированная качественность, или обратно — качественность в условиях невыявленной количественности. Синтез их — одинаково полагает и то и другое и одновременно снимает их ради большей общности и смысловой взаимопронизанности. В определенном интеграле — ограниченность пределов; в интегрированном дифференциальном уравнении — положенность внутренних определений; в вариационном исчислении разыскивается интеграл, который является и результатом изменения аргумента χ в определенных пределах (и потому тут ищется всегда определенный интеграл), и результатом изменений самой функции (и потому тут дана изменяемость самой структуры функции). Подчеркиваем, что здесь разыскивается определенный интеграл в условиях изменения именно структуры функции, потому что чисто количественные изменения функции привели бы не к диалектическому синтезу формы и содержания, но к чисто внешнему и механическому их объединению. Простейший пример: Здесь χ—аргумент, у—функция, у' — первая производная, х0 и x1 —крайние пределы изменения значений аргумента. Вариационное исчисление ставит своею целью нахождение условий для максимума и минимума определенного интеграла I, когда y=f(x) сама меняется по своему виду. Тут исследуют: при какой зависимости у от х, входящей в состав подынтегральной функции, данный интеграл будет иметь максимальное или минимальное значение? В дифференциальном исчислении в учении о maxi[mu]m и minim [um] вопрос ставится так: при каком значении χ функция у достигает максимума или минимума (причем это значение находится из наблюдения за поведением производных)? В вариационном исчислении не только все исследование совершается в направлении, обратном дифференциальному исчислению (как это и вообще в интегральном исчислении), но, кроме того, в этом обратном направлении путь совершается не только от производной, но еще и от ее связанности с другими действиями, так что лучше уже говорить, — от новой функции, куда производная входит лишь как составной элемент, да еще в этой функции содержится вариируемая первообразная функция, т. е. функция, изменяющаяся в своей структуре. Получаемый таким способом интеграл несет на себе энергию определенности области изменения аргумента, энергию самостоятельной определенности, зависящей от этого аргумента функции, и, наконец, энергию изменений структурной определенности функции. МАТЕМАТИКА И ДИАЛЕКТИКА. К ЛОГИЧЕСКОМУ ОБОСНОВАНИЮ АКСИОМАТИКИ ТРАНСФИНИТОВ Философия есть такое знание, которое, хотя и не сводится на совокупность прочих наук, все–таки касается решительно всякой науки, и для всякой науки у нее готовы логические предписания, которые она довольно бесцеремонно диктует и требует безоговорочного признания. Хорошо это или плохо, я не знаю; но я знаю, что современная математика, несомненно, выиграла бы, если бы ее работники немного более чутко и внимательно относились к философии и логике. Присматриваясь к некоторым построениям современных математиков, с удивлением замечаешь, что под ворохом всяких обозначений, символов, значков и страшных, пугающих терминов, что математики любят нагромождать выше всякой меры, кроются самые элементарные и примитивные проблемы, которые в философии давным–давно или решены, или решались. Если бы нашелся светлый ум, который бы сумел выразить некоторые математические теоремы без всей этой удручающей суеты значков и обязательного стремления свести все на «формулы», то философски грамотный читатель поразился бы той близостью и даже тождеством проблем, которыми всегда занимались и занимаются философы и математики. В настоящей статье я хочу приоткрыть для философов одну такую область математики и показать, что здесь ставятся и решаются как раз те самые вопросы, которые интересовали всегда и философов и которые решаются всяким философом, если он задался целью дать строгую и систематическую разработку логики. Эта математическая наука есть учение о трансфинитных числах, или, общее, учение о множествах. Однако я бы уклонился от простой логической интерпретации учения о множествах. Я преследую задачу несколько более трудную и ответственную и хочу дать не просто интерпретацию, но и тот метод решения проблем учения о трансфинитах, который, как я убедился, чужд современным математикам и игнорирование которого приводит их к тяжкому тупику «противоречий» и «парадоксов», заставляющему многих унывать и сетовать на ограниченность человеческого знания. Что человек знает маловато и что каждую крупинку знания приходится брать с бою, — это давно известно и против этого трудно спорить. Но раз мы уж решились обнять умом такие понятия, как «бесконечность», «предел», «трансфинитное число» и т. д. и т. д., то уж унывать нечего. Или вообще надо бросить заниматься математикой, или, если заниматься, то надо доводить ее до конца и не считать «парадоксы» каким–то провиденциальным пределом, запрещающим переходить в царство полного знания. Математики оперируют «бесконечностями» так, как, может быть, иной не оперирует своими ногами, чтобы ходить, или руками, чтобы работать. И раз хватило смелости «обнять необъятное», то давайте уж обнимать до конца и давайте ставить все точки над чтобы уяснить себе, наконец, полную логическую природу бесконечного. Я утверждаю, что единственный метод, способный дать мысли полное овладение категорией бесконечности и категорией «множества», есть диалектический метод. И я покажу, как философ чисто диалектически выводит из первоначальных принципов то же самое, что математик находит постепенно и несистематично, барахтаясь в бездне математических построений и прибегая к единственному средству обобщения—к своеобразной индукции над эмпирически наблюдаемым логическим материалом. Мы увидим, как учение о трансфинитах с необходимостью, но уже строго систематически вытекает из основ мысли как таковой и как тут, в диалектике, мы сразу получаем метод для построения сначала аксиоматики, а потом и конкретного содержания всякой математической науки. Для этого попробуем сначала формулировать основы диалектического метода вообще. И прежде всего необходимо сказать, что не есть диалектика. I Во–первых, необходимо отбросить обывательское и повседневное отношение к термину «диалектика», которое видит в нем указание на спор, на умственную эквилибристику, на умение оперировать головоломными отвлеченностями. Такое понимание диалектики никакого отношения к существу дела не имеет. Точно так же широкая публика, желая указать на нереальность, глупость и ненужность, наивность данного рассуждения, говорит: вы рассуждаете платонически. Разумеется, такое словоупотребление никакого отношения к Платону не имеет. Или часто говорят: я погрузился в нирвану. Нирвана есть в соответствующей религии экстаз ума, доводящий до полного подавления всего вне–умного. Тем не менее мы без всякого затруднения говорим о нирване, отождествляя ее, приблизительно, с обломовщиной. Разумеется, такое популярное и слишком упрощенное понимание Платона и нирваны никак не может руководствовать нами в серьезном изучении того и другого. Равным образом, и о диалектике судить на основании того, что думают о ней профаны и люди обыденного опыта, недостойно человека, любящего мысль и рассуждение. Диалектика не есть ни спор, ни акробатство ума, ни головоломная эквилибристика мысли. И владеть диалектическим методом отнюдь не значит уметь блестяще побеждать в споре или создавать и решать выдуманные и нереальные софизмы. Во–вторых, диалектика не есть натуралистическая метафизика. Под метафизикой я понимаю овеществление абстрактных понятий. Так, напр., человек обладает способностью действовать, волей; воля в реальном человеке неразрывно связана с целым океаном других способностей, и связь эта бесконечно разнообразна и глубока. Но вот, находятся философы, которые, взявши понятие воли, конечно, отличное по своему смыслу от всех других переживаний, хотя фактически и связанное с ними, гипостазируют, овеществляют это понятие и учат о том, что в основе мира лежит воля, что мир есть воля, что мир живет по типу волевых процессов, и т. д. Так можно гипостазировать понятия сознания, мысли, мышления, ощущения, материи и т. д. и т. д.; и все это будут разные формы натуралистической (т. е. овеществляющей абстрактное) или абстрактно–натуралистической метафизики[232]. Такая метафизика оперирует только с вещами и с их причинным взаимоотношением, хотя и может понимать эти вещи очень невежественно, на манер той или другой формы спиритуализма. Разумеется, диалектика, если она не хочет погрязнуть действительно в субъективистическом мире вымышленных проблем, должна также оперировать не с чем другим, как с вещами. Но это не просто так, как оперирует с ними повседневный опыт или эмпирическая наука. Это какое–то особенное оперирование; и указание на вещи просто еще ничего не говорит о свойствах этого оперирования. Итак, диалектика не есть оперирование со слепыми и эмпирически–случайными вещами в их причинном взаимоотношении, и потому она не есть ни эмпирическая наука с ее индуктивно установленными законами, ни абстрактно–натуралистическая метафизика с ее реальными или вымышленными обобщениями над миром вещей, к какой бы сфере эти последние ни относить. Вопреки первому — обыденному — представлению о диалектике как об искусстве спорить мы должны сказать, что диалектика есть строжайший научно–философский метод. Вопреки второму— натуралистическому — пониманию ее мы должна квалифицировать ее как сферу чистого смысла. Диалектика говорит не о вещах, не о фактах, но о смысле вещей и фактов. Вещи и факты можно передвинуть, взвесить, изменить. Смысл не передвинешь и не взвесишь. Этот карандаш я могу сломать, но самый смысл, самое понятие карандаша нельзя сломать и уничтожить. Вот об этой чисто смысловой стороне действительности и говорит диалектика, предоставляя говорить о действительности как о причинно–взаимосоотносящихся фактах — отдельным эмпирическим наукам. В–третьих, что не есть диалектика в этой сфере чистого смысла? С какими еще методами и установками встречаемся мы в этой сфере? Тут, прежде всего, нас ожидает феноменологический метод, имеющий в современной философии весьма значительное распространение. Феноменология, как она создана в наши дни Гуссерлем, также изучает не вещи, но их смысл, не факты, но их смысловые лики. Она также избегает опоры на ощущения слепо и случайно протекающих явлений и пытается фиксировать в них то, без чего не может быть самих явлений, того смыслового и существенного, что именно и воспринимается как погруженное в алогический поток эмпирических явлений. Но современная феноменология отличается одним существенным признаком, который противопоставляет ее диалектике. Именно, феноменологический метод есть метод описания, а не объяснения смысла. Феноменологи обычно думают, что объяснять можно только натуралистически и метафизически, и предлагают выход из этого в виде принятия метода описания. Но, во–первых, метафизик также может не объяснять, а описывать и констатировать, и натуралист, овеществляющий абстрактные понятия, также может не задаваться целями объяснения и конструирования, а оставаться всецело на почве описания утверждаемых им вещностей. Во–вторых же, не ясно, почему нельзя объяснять вне–натуралистически, вне–метафизически? Всякий вывод частного из чего–нибудь более общего есть уже объяснение частного, и объяснение чисто логическое, а не вещное. Возможно же чисто смысловое объяснение смысла, и оно ничего общего не будет иметь с объяснением смысла из каких–нибудь фактов, физических или метафизических. Вот это–то смысловое объяснение смысла (не вещно–причинное, а именно смысловое и именно объяснение) и есть диалектика. Диалектика не просто констатирует те или иные формы или виды смысла, но объясняет, как они связаны между собою. Она не просто дает статическую картину того, что есть, но вскрывает ту динамику смысла, которая именно привела смысл к данной картине. Например, феноменолог, рассматривая целое, видит, что оно не есть простая сумма частей. Он и говорит: целое больше суммы всех своих частей. Но, с другой стороны, он же сам видит и констатирует, что в данном целом и нет ничего, кроме этих частей. Получается так, что если рассматривать целое по частям, то ничего, кроме этих частей, и нет в целом. Чтобы из частей получилось целое, отнюдь не надо прибавлять к ним какую–то еще новую часть. С другой же стороны, если рассматривать целое именно как целое, то ясно всякому, что оно не делится на свои части и что оно именно больше суммы своих частей. Как тут быть? Феноменолог выходит из этого затруднения весьма просто. Когда ему надо подчеркнуть подлинную стихию целого, цельность, он будет говорить, что целое есть некое положительное содержание, которое больше суммы своих частей. Когда же ему надо подчеркнуть вещную составленность целого из отдельных фактов и вещей, он скажет, что в целом нет ничего, кроме его частей. Описательно такая позиция совершенно безупречна, потому что описательно целое действительно и больше суммы своих частей, и равняется ей. Но совершенно другой оборот получает дело, если задаться вопросом о том, как объяснить это противоречие? Почему вдруг так получается, что то и другое, несмотря на взаимную противоречивость, одинаково требуются мыслью и мысль не может уступать ни того, ни другого? Вот объяснением этого противоречия, объяснением чисто же логическим, и занимается диалектика. Равным образом, объяснение взаимоотношения смысла и факта, бесконечного и конечного, сознания и бытия и т. д. и т. д. может дать только диалектика, в то время как феноменология просто констатирует и описывает без всякого объяснения. Феноменология описательно устанавливает изолированные формы и виды смысла, трактуя каждую такую форму как некую цельность, несводимую на те или другие подчиненные моменты. Диалектика же связывает все такие цельности одна с другою и показывает, как одна из них порождает другую, как одна из них с необходимостью вытекает из другой и как все они вместе дают самопорождающуюся систему смысла, или разума. Феноменология—описание, диалектика — конструкция. Могут сказать, что феноменология также учитывает взаимосвязь отдельных цельностей между собою. Конечно, феноменологии ничто не мешает заниматься и объяснением связи цельностей. Но тогда спросим, что же такое это объяснение и эта связь? Можно объяснять натуралистически, привлекая причинную связь эмпирически наблюдаемых вещей. От такого объяснения феноменологи отказываются. Но тогда остается чисто смысловая связь. Как же ее понимать? Если мы будем изучать ее в пределах каждого изолированного факта, как это делают нынешние феноменологи, тогда связь смыслов остается неизученной. И феноменологи обыкновенно предоставляют объяснение этой связи наукам об эмпирическом мире, о мире «естественной установки». Факты как–то создаются и как–то существуют, — это, говорят они, не наше дело. Мы говорим не о фактах, но о смыслах. Ясно, что такая позиция есть, в сущности, дуалистическая позиция, близко напоминающая кан–товский дуализм «вещей в себе» и «явлений». Если феноменология так объясняет смыслы, что связь их продолжает диктоваться эмпирически–индуктивными обобщениями, то это, конечно, не есть полное смысловое объяснение. Если же феноменология даст объяснение так, что уже не придется ссылаться на «мир фактов», и так, что «мир фактов» также окажется миром смысла, хотя и специфически модифицированным, — то тем самым феноменология перестанет быть самой собой и станет диалектикой, объединится с нею. — Итак, от феноменологии диалектика отличается чисто смысловым конструированием чисто смыслового взаимопорождения сферы чистого смысла (и прежде всего, конечно, категорий). В–четвертых, диалектиками себя называют сторонники трансцендентальной философии типа Когена и Наторпа (последний имеется в виду до 1926 г.). Сущность этой философии также сводится к фиксированию чисто смысловых категорий. Тут настоящая чистота объективного смысла и настоящее утверждение только одной смысловой «реальности» (в отличие от натуралистической «действительности»). Однако этот тип трансцендентализма рассматривает смысл исключительно в стихии его смыслового становления. Идея для него—не лик, не формы, не смысловая картина, но—только гипотеза, становящаяся установка, задача и метод, чисто «как» функция. В этом — коренное расхождение с диалектикой. Феноменологический и трансцендентальный методы—две стороны, которые должны быть объединены в подлинном философском методе; они—две крайности, абстрактно выделенные из цельного, единого метода и применяемые каждая в отрыве от целого. Феноменология фиксирует статические лики, отказываясь от конструирования всей динамической их стихии; она не понимает, откуда взялись эти лики и что их ждет в будущем, в смысловом, конечно, будущем. Трансцендентализм, наоборот, конструирует динамическую стихию цельной идеи и смысла, ее смысловую действенность и функционирование, но не видит и не хочет видеть самого лика того, что действует и функционирует, самой картины того, что дает закон и метод и что осмысливает вещи. Его интересует не смысл, но осмысливание. Диалектика же говорит о законченных и статических смыслах только в меру выведенности их из основ самой мысли, в меру порожденности их стихией самой мысли, равно как и о порождении, о динамике смысла—только лишь в меру тех законченных оформлений, которые именно порождены и динамически осмысленно возникли. Таким образом, от трансцендентализма диалектика отличается конструированием визуально–осмысленных данностей смысла, представляющих собою не–становя–щуюся и завершенную картинность идеи. В–пятых, диалектика есть противоположность формальной логике. Опять–таки, и то и другое относится и к чистой сфере смысла, и оперирует с чистыми понятиями, а не с вещами, и дает конструкции тех или других форм мысли и смысла. Но мы жестоко ошибемся, отождествивши эти два метода. Под формальной логикой мы понимаем учение о смысле, возникающее на почве т. н. законов мышления, т. е. закона тождества, противоречия и исключенного третьего. Закон тождества, гласящий, что Λ — А или, точнее, что А в одно и то же время и в одном и том же отношении тождественно Af т. е. самому себе, этот закон, оставаясь в диалектике в полной силе, добавляется, однако, законом, ему совершенно противоположным, а именно тем, что одно и то же А в одно и то же время и в одном и том же отношении различно с собою, нетождественно себе. А и есть А, и не есть А. Соответствующим образом модифицируются в диалектике и оба другие закона «формальной логики». Оказывается, сама же мысль, сам разум требует противоречия себе, самопротиворечия, и сама же мысль, сам разум требует преодоления этого противоречия в еще новом утверждении. Диалектика, которая не есть логика противоречия, — не есть диалектика, но — только формальная логика. И [есть ] очень много авторов, именующих себя диалектиками и в то же время совершенно не владеющих этим методом, растворяя необходимую тут антиномику в систему непротиворечивых, упорно не–тождественных между собою полаганий смысла. Противоречие, его преодоление и утверждение нового противоречия есть душа и жизнь диалектики. Поэтому от замороженных и оцепенелых конструкций формальной логики диалектика отличается именно антиномико–синтетической структурой смысла. Сводя все предыдущие отрицательные и положительные определения диалектики (в специальном трактате их можно было бы значительно расширить, разъяснить и углубить), мы получаем следующую характеристику диалектического метода в его существе и наибольшей общности. 1) Диалектика есть сфера чистого смысла. В этом она отлична как от всякой натуралистической метафизики, оперирующей гипостазированными абстрактными понятиями, так и от отдельных наук, основанных на эмпирическом изучении через чувственные восприятия множества фактов и индуктивном их обобщении. Диалектика не гипостазирует, не овеществляет абстрактные понятия (ибо в ней и нет ничего, кроме понятий), не изучает эмпирическое множество текучих фактов (ибо фиксирует их нетекучий смысл) и не делает никаких индуктивных обобщений (ибо в сфере смысла все одинаково обще). 2) Диалектика есть осмысленно–объяснительное конструирование смыслового взаимопорождения отдельных моментов цельной сферы разума, так что оказывается понятным, каково логическое происхождение и отдельных моментов смысла, и всей сферы смысла вообще. Этим диалектика отличается от феноменологии, основанной на описании изолированных форм смысла, связь и взаимопорождение которых мыслится тут только натуралистически и отводится в сферу т. н. мира естественной установки. Диалектика не описывает, но объясняет и выводит не только логическое, но и алогическое — из цельного единства смысла вообще. 3) Диалектика есть фиксирование в самопорождающейся стихии смысла завершенных и умно–оптических, визуально–смысловых оформлений, нерушимо пребывающих в непрерывно подвижной стихии смысла. Этим диалектика отличается от трансцендентализма типа Когена, основанного на интерпретации смысла как «чистой возможности», «закона», «принципа», «метода», «постановки проблемы», «гипотезиса». Диалектика не ограничивается только стихией становящегося (хотя бы и чисто смыслового) смысла, но признает последнее только в связи с порождением отсюда закругленных и визуально–данных уму оформлений. 4) Диалектика есть антиномико–синтетическое конструирование сферы смысла как самопорождающегося и самопреодолевающегося противоречия. Этим она отличается от т. н. формальной логики, основанной на законах тождества, противоречия и исключенного третьего. Диалектика есть конструирование смысла, который сам себя порождает, т. е. смысл этот есть и порождающее, и порождаемое, т. е. он и тождествен с собою, и отличен от себя, т. е. закон тождества дополняется тут законом различия в тождестве. И вообще, никакое определение невозможно без ограничения; ограничение же есть некоторое отрицание; отрицание же в сфере смысла есть отрицание осмысленного утверждения. Итак, отрицание и утверждение в сфере смысла как отличаются между собою, так и отождествляются. След., закон исключенного третьего дополняется законом неисключенного третьего. И т. д. Отдавши себе отчет в существе и задачах диалектики, попробуем теперь произвести первоначальные и необходимейшие диалектические построения, с тем чтобы показать, что учение о множествах есть не что иное, как именно эти первоначальные и необходимейшие построения в сфере чистого смысла. II Математика есть наиболее отвлеченная сфера чистого смысла. Чтобы сравнивать ее с диалектикой, необходимо и диалектику начать с наиболее отвлеченных и общих построений. Диалектику, кроме того, и по другим соображениям удобно начинать с самого общего, чтобы потом постепенно подойти и к конкретному, частному. Поэтому попробуем с максимальной краткостью формулировать первый отдел диалектики, который можно назвать учением о сущности, или о смысле. I. Если мы возьмем некое «одно» (какое это «одно» по своему содержанию, тут нас не может интересовать, ибо мы берем как раз чистое «одно», чистое «сущее», одно и «сущее» само по себе), то, взятое в своем чистом виде, т. е. когда нет никакого «иного» к нему, оно не есть и никакое одно. Одно (сущее), если оно подлинно одно, необходимым образом отличается от всего «иного», и если этого «иного» нет, то нет и никакого одного. Оно немыслимо, не существует и есть какое–то сверх–мыслимое, сверх–сущее одно. II. а) Однако это одно мы мыслим именно существующим. Существовать в мысли—значит быть отличенным от всего другого. Отсюда 1) одно для своего осмысленного существования в мысли, т. е. чтобы быть смыслом, или моментом смысла, чтобы быть предметом мысли, требует кроме себя как такового еще категории различия. Одно различно с иным—таково первое необходимое утверждение диалектики. Но различное с иным не должно ли быть предварительно тождественно себе? Может ли одно быть отличным от чего–нибудь, если мы еще не знаем, что это «одно» есть именно одно и то же «одно», т. е. что оно самотождественно? Разумеется, 2) одно необходимым образом тождественно с самим собою, и след., ему присуща категория тождества. Итак, «одно» отлично от «иного» и тождественно с самим собою. Но тут же мысль требует и утверждений, противоречащих этим. В самом деле, «одно», говорим мы, отлично от «иного». Но ведь это «иное» тоже есть некое одно. Если бы оно не было таковым, оно было бы ничем, и можно ли было бы тогда говорить, что первоначальное «одно» отлично от него? Итак, «иное» также есть одно. 3) Это значит, что одно отлично от самого себя. Одно — не иное; иное = одному; след., одно не есть одно, одно отлично от себя самого. Далее, одно, как гласит наша первоначальная установка, тождественно себе, т. е. одному. Но одно, как мы сейчас только что нашли, не есть одно, отлично от себя. Стало быть, одно тождественно такому одному, которое отлично от себя, т. е. иному. 4) Другими словами, одно тождественно иному. Или: одно тождественно себе, одному; но это последнее есть иное одного; след., одно тождественно иному. Сводя найденные диалектические построения, необходимые для мыслимо–сти «одного» (1—4), мы получаем следующие аксиомы мыслимо–сти всякого одного. 1. а) Одно (нечто, сущее) отлично от иного. b) Одно тождественно с иным. 2. а) Одно тождественно с собою. b) Одно отлично от себя. Кратко говоря, одно есть самотождественное различие. Это на первый взгляд весьма странное утверждение ничего не содержит в себе парадоксального или ошибочного. Ниже мы увидим, где подлинный смысл такого утверждения. Если мы имеем целое и его части, то о нем мы вполне можем, и если подумать, то и должны утверждать, что оно не только тождественно себе (в чем едва ли кто–нибудь будет сомневаться), но отлично от себя, ибо оно фактически состоит из частей и ничего в нем, кроме частей, нет, а тем не менее целое не есть сумма частей. Как целое, оно тождественно себе; как совокупность частей, оно отлично от себя. Но также надо рассуждать и в отношении «иного». Как целое, оно, разумеется, отлично от всего иного, ибо потому мы и именуем его специально, что оно ото всего отличается. Но как сумма всех своих частей, целое отлично от себя самого, т. е. иное, инаковость, содержит в самом себе и даже благодаря этой инаковости только и становится суммой частей; стало быть, оно тождественно с «иным». — Однако тождество и различие еще не обосновывают вполне мыс–лимости «одного». b) Одно есть тогда одно, когда оно отлично от многого, т. е. когда проведена для него определенная граница. Граница и есть то самое, что заставляет одно быть сразу и отличным от иного, и тождественным с ним. Но представим себе, что мы имеем только категории различия и тождества и больше никаких других категорий «одному» не присуще. Если бы это было так и в действительности, то, имея некое одно, мы никогда не смогли бы перейти к «иному». Чтобы отличить «одно» от «иного», надо перейти от «одного» к «иному». Если нельзя перейти, нельзя двигаться, нельзя и различать, нельзя отождествлять, ибо что же именно тогда различается и отождествляется? 1) Значит, необходима категория движения. Чтобы одно отличить от иного, надо от одного перейти к иному; и чтобы одно отличить от него самого, т. е. отличить его от его частей, надо продвинуться и вообще двигаться в пределах этого одного. Итак, одно движется и внутри себя, и вовне, в ином. 2) Но допустим, что одно только движется <…> МЕТАМАТЕМАТИКА АЛЕКСЕЯ ЛОСЕВА Из Хаоса родимого Гляди — Звезда, Звезда!.. Из Нет непримиримого — Слепительное Да!.. Вяч. Иванов. Огненосцы Перед нами новая книга А. Ф. Лосева, и это означает, что из глухой пелены небытия явился новый пласт творчества выдающегося мыслителя, а сам момент важного обретения нашей культуры нуждается в символической окраске подобающей яркости. Что же главное в этом творчестве, мощном и длительном, разностороннем и, вместе, необычайно цельном? Всякая мыслительная конструкция, всякое умопостроение (и умонастроение) у Лосева пронизаны универсальной интуицией, именно, интуицией «слепительного Да». В мире нет ничего, кроме света, а тьма и любые прочие, по излюбленному авторскому выражению, «степени затемнения» призваны только оттенять, окаймлять, обрамлять четкие контуры и видимые точки, являя неразрывное единение темного фона и лучезарного лика. Разум воистину призван равноправно сопрячь Тьму и Свет, Хаос и Логос, призван обнаружить хаокосмическую Гармонию. § 1. НЕДОСТАЮЩЕЕ ЗВЕНО Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Это—действительно некое недостающее звено творчества А. Ф. Лосева. Рассмотрим, чем же была вызвана своеобразная вспышка логико–математической активности философа, вспышка, свидетельства которой дошли до нас только сейчас. Прежде всего немаловажную роль сыграли известные внешние обстоятельства жизни А. Ф. Лосева — арест в 1930 г. и последующая «сталинская перековка» на берегах Беломорканала. Лагерный опыт явственно свидетельствовал, что дальнейшая разработка идей, выдвинутых в знаменитом «восьмикнижии» 20–х годов, была бы попросту самоубийственна, поскольку она по необходимости требовала острых обобщений социологического, культурологического и богословского характера. Нужно было искать новые темы и точки приложения творческих сил. Этот поиск начался еще в тюрьме, где он «прошел подробный курс дифференциального и интегрального исчисления, под хорошим руководством[233] и уже в Свирлаге писалась (вернее, сочинялась и держалась в уме) книга по диалектике аналитических функций. В архиве А. Ф. Лосева хранится небольшая пачка разрозненных листков, относящихся к лагерной поре его творчества. Лихорадочные, сделанные в очевидно не подходящих не только для творчества, но и просто для письма условиях, эти наброски проливают свет на раннюю историю создания «Диалектических основ математики» и свидетельствуют равно как о научном, так и о гражданском подвиге их автора. В жизни А. Ф. Лосева был короткий период, когда внешние условия складывались, казалось, вполне благоприятно для его творческих планов. Таковым было время работы на философском факультете Московского университета в начале 40–х годов, когда там создавалась кафедра логики. В архиве А. Ф. Лосева сохранился «План научно–исследовательской работы философского факультета МГУ на 1943 г.», где по разделу «Логика» планировалось издание работы А. Ф. Лосева объемом в три печатных листа. Обширная статья под названием «Логическая теория числа» была действительно написана (она представляет собой переработанные начальные главы «Диалектических основ математики»), однако ни в 1943 г., ни потом при жизни автора не публиковалась[234]. Та же участь ожидала и все остальные труды, созданные в ходе логико–философского «штурма». Он был предпринят А. Ф. Лосевым в основном до момента изгнания из университета в результате доноса и обвинения в «идеализме». Так, после 1944 г. пришлось (правда, не сразу) оставить тему «философии числа» и в дальнейшем сосредоточиться— уже более удачливо — на «истории античной эстетики». Так надежды на относительную нейтральность логико–математических тем оказались иллюзорными, и обо всем размахе лосевских замыслов и результатов в этой области может судить лишь современный читатель. В который раз подтвердилась истина, со знанием дела констатированная П. А. Флоренским, о неизбежности отставания по фазе по меньшей мере на полвека между взлетом одинокого творчества и признанием заслуг творца медленно дозревающим обществом. Кроме обстоятельств внешнего порядка сознательные и углубленные логико–математические «экскурсы» диктовались и внутренней потребностью творческого бытия философа. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла не только с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. Вслед за (или, вернее, вместе с) «философией имени» и «абсолютной мифологией» должна была быть построена и «философия числа». Но в строительстве этом существенно различался род действий, о чем надобно судить с должной бережностью и пониманием. Очевидное тяготение А. Ф. Лосева к систематическому методу диалектики с опорой на упомянутую выше триаду позволяет с уверенностью определить его принадлежность к давней и необычайно стойкой традиции. Первое звено в этой цепи преемств составляют Платон и Аристотель, далее следуют неоплатоники во главе с Плотином и Проклом, затем — Николай Кузанский, потом — немецкие идеалисты в лице Шеллинга и Гегеля, наконец, новое и последнее звено было ковано на кузне отечественной мысли… Конечно, диалектическим методом владели многие из лосевских учителей и современников, вспомним В. Соловьева, Флоренского, Франка, Карсавина, Ильина, Муравьева. Лосевская мысль на этом фоне выделяется своим идейным монизмом, непоколебимой последовательностью в приложениях, принципиальным универсализмом, возведенным в принцип. Но не только. Здесь явлен итог, произнесено последнее слово. По словам автора Предисловия к «Диалектическим основам математики», в «случае Лосева» мы имеем дело с одним из «завершительных, резюмирующих умов», каковые «всегда появлялись в конце великих эпох для того, чтобы привести в систему вековую работу мысли и создать инвентарь умирающей культуры, чтобы передать его новой культуре, только еще строящейся» (6—7)[235]. Уточним теперь характер означенного образа платоновской цепи, точнее сказать, цепи платоновско–лосевской, если брать ее крайние звенья. Когда в 20–х годах систематизирующая мысль А. Ф. Лосева касалась проблем идеологических, социальных и религиозных, платонизм получал (когда—скрытое, когда — открытое) православное переосмысление и критику. «Последний русский диалектик» не порывал с двухтысячелетней традицией, но указывал ее недостатки и даже опасности (для непосредственного жизнепонимания) вроде, скажем, безличного онтологизма или пантеизма. Потому в сферах Имени и Мифа цепь нуждалась в принципиальном дополнении. Когда же в 30—40–х годах А. Ф. Лосев сосредоточился на философских вопросах математики и логики, полагаясь на относительную нейтральность этой области, прежняя неоплатоническая техника мысли уже не требовала качественных изменений. В сфере Числа цепь укреплялась не столько наращиванием, сколько отделкой в каждом из старых звеньев. По приложении старинного и даже древнего метода, в свете незыблемых «принципов» недостающее обобщение получали именно «факты» той обширной области точных наук, что традиционно считалась самой структурированной и развитой областью знания Нового времени. Со страниц логико–математических исследований А. Ф. Лосева встают тени великих предшественников. Ажурная архитектоника лосевской «Логической теории числа», безусловно «одного из шедевров в философской литературе, занимавшейся числом» (12), соразмерна, сомасштабна, соприродна триадическим построениям «учения о бытии» из «Науки логики» Гегеля. Когда в «Диалектических основах математики» обнаруживаются веские суждения о «множестве всех чисел» и за таковым закрепляется термин «тотальность», в родственном ряду мы тут же находим «единство множества», Totalitat Шеллинга. И в той же книге прослеживая логическую «дедукцию геометрических фигур», нужно вспомнить более ранние построения «Античного космоса и современной науки», которые выводят нас прямо к Проклу с его комментариями «Элементов» Евклида. Чтение философского эссе «О форме бесконечности» (523—533) почти невольно заставляет вспоминать трактат «Об ученом неведении» Николая Кузанского — столь равномощны и равнозначимы эти два текста. Во всяком случае там, где затрагиваются одни и те же темы, разительно совпадают и результаты. Можно приводить еще много примеров подобных перекличек или, вернее, своеобразного диалога единомышленников. Даже в тех случаях, когда в своем диалектическом освещении нескончаемой математической «эмпирии» А. Ф. Лосев обращается к проблемам, еще незнакомым его предшественникам (несчетность в теории множеств, типы логик и геометрий, теория вероятностей и т. д.), им, кажется, руководит уверенность, что античные неоплатоники и немецкие диалектики—доведись им творить сегодня — воспарили бы в тех же логических «эмпиреях», где в реально–историческом одиночестве пребывал их российский vis a vi. § 2. «В ТРАНШЕЯХ ЛЕНИНСКОЙ ДИАЛЕКТИКИ» Приступая к характеристике лосевской «философии числа», мы воспользуемся излюбленным приемом ее автора, методом «меональ–ного отграничения»: чтобы подвести к какому–нибудь «это», нужно всесторонне рассмотреть «то, что не есть это». Приверженность подобной интеллектуальной технике (ее применял Сократ и особенно любили неоплатоники) лишний раз показывает и доказывает действительную цельность творчества А. Ф. Лосева, который предстает диалектиком и по внутренней содержательности полученных результатов, и по внешней стилистике способа добывания таковых. Итак, каким же было «Нет непримиримое» в ту именно пору, когда творилось «слепительное Да» этого «маленького философа в Советском Союзе»? Для ситуации характерен заголовок небольшой заметки из газеты «Вечерняя Москва» за 10 апреля 1929 г.: «В траншеях ленинской диалектики[236] . В статье не без торжественности извещалось о решающей схватке (шла 2–я конференция марксистских научно–исследовательских учреждений) между отечественными «механистами» и «диалектиками». Здесь нас не занимают подробности этой малонаучной и не без зловещих оттенков дискуссии, приведшей в конце концов к прямым репрессиям многих ее участников, как «победителей», так и «побежденных». Важнее отметить специфически «фронтовую» риторику тех лет, а также тот факт, что как раз с этого небольшого текста следует начинать отсчет[237] всей череды многочисленных выступлений в тогдашней печати, где так или иначе поминался «идеалист и мистик Лосев». После заметки «Вечерней Москвы», впервые изложившей доклад А. М. Деборина (с него 8 апреля 1929 г. открывалась упомянутая всесоюзная конференция), появился короткий комментарий в «Правде» за 11 апреля. Чуть позже уже сам доклад под названием «Современные проблемы философии марксизма» был опубликован в полном объеме сначала «Вестником Коммунистической Академии», затем тремя отдельными изданиями 1929—1930 гг., вместе со стенограммами прений по докладу. Автор заметки в «Вечерней Москве» рисует картину «ожесточенных боев на философском фронте», в ходе которых «воинствующие материалисты–диалектики» вынуждены не только наносить «сокрушительные удары противникам на «внутреннем фронте», извращающим основы материалистической диалектики», они также успешно «сражаются с исконным внешним врагом — идеализмом». Оказывается, «значительные кадры идеалистов, не сложив оружия, окопались в ряде наших учреждений (например, в ГАХНе) и производят вылазки в качестве «вольных стрелков». Тов. Деборин подробно характеризует суть «средневеков–щины» одного из таких «стрелков» — Лосева, стоящего на позиции «диалектического»… идеализма». Действительно, целые страницы вступительной части программного доклада А. М. Деборина отданы разбору учения «реставратора» диалектики (цитируются книги А. Ф. Лосева «Античный космос и современная наука» и «Философия имени», вышедшие в 1927 г.), который—неслыханно! — «предпочитает «чистую диалектику» Плотина и Прокла материалистической диалектике Маркса, Энгельса и Ленина». Конечно же, заключает докладчик, эта «лосевская идеология отражает настроения самых реакционных элементов нашей страны», и с тем убеждает своих коллег, что «борьба с идеализмом и мистицизмом является нашей первой обязанностью»[238]. Как видим, размежевание обозначалось явственно и недвусмысленно. «Новая русская религиозная система», свидетельствующая своим появлением, «что и внутри России жив дух истинного философского творчества, пафос чистой мысли, направленной на абсолютное» (воспроизводим констатацию С. Л. Франка[239], который в эмигрантском да–леке откликнулся на те же две книги А. Ф. Лосева, что год спустя «прочел» А. М. Деборин), понадобилась советским философам скорее для сведения счетов «со своими». В этом отношении показательны материалы дискуссии по деборинскому докладу, где торжествующие «диалектики» бросают упрек сконфуженным «механистам», поскольку последние не проявили должной партийной бдительности и не объявили бой «идеализму шпетов и лосевых», в то время как «диалектики» уже начали окопную войну на «внешнем» фронте… Заметим, что первые выпады против А. Ф. Лосева исходили именно из лагеря, где еще были способны (хотя бы втайне) оценить реальное значение «чистой диалектики». Сохранились свидетельства, что А. Ф. Лосев какое–то время строил планы объяснения с А. М. Дебориным, желая установить с ним взаимопонимание на почве научной (неидеологизированной) мысли. Показательны в этой связи некоторые сочувственные оценки западной, в том числе эмигрантской, прессы на итоги «философской батрахоми–омахии» в Советском Союзе, когда отмечалось, что «деборинцы ценили специфичность философии», «в их работах воскресали основные философские категории» (П. Востоков), намечались «тенденции к идеализму» и «обособление философии от политики» (Н. Бердяев)[240]. Итак, даже в относительно либеральные времена конца 20–х годов, когда «никакого классового содержания» еще можно было не находить «ни в Пифагоровой теореме, ни в правиле Ампера, ни в законах Менделя» и тем самым еще сопротивляться «солнечной истине марксизма»[241] уже тогда лосевская философская система вообще и его «философия числа» в частности были обречены на отторжение. Что ж тогда говорить об атмосфере 30–х годов, когда философское освещение проблем математики «обогатилось» борьбой с «егоровщиной» и «лузинщи–ной» (заметим, что Д. Ф. Егоров и Η. Н. Лузин входили в круг ближайших друзей А. Ф. Лосева) и когда, по определению современных исследователей, «пышным цветом расцветает славословие вождю» и побеждают «сдерживаемые до того начетничество, догматизм, конъюнктурщина, раболепие, беспринципность, аморальность, доносы друг на друга»[242]. И какие же труды полагал издать А. Ф. Лосев в эти годы? В его «Диалектических основах математики» нет не только какого–то намека на идейное сближение, к примеру, с «Диалектикой природы», тут нет даже формальных, чисто ритуальных отсылок к трудам классиков марксизма–ленинизма. А каким образом он цитировал таковых, если дело к тому все–таки шло, как, например, в работе «О методе бесконечно–малых в логике»? Все «нужные» и злободневные цитаты компоновались в локальные области вступительной части (удобно проверить лояльность автора, не утруждая себя чтением содержательной части текста) или в специальный отдельный параграф, где механически складируются высказывания имярек без всяких оценочных суждений и опять–таки без реальной увязки с собственными построениями. Вообще исследователям «катакомбной» составляющей отечественной философской мысли пример творчества А. Ф. Лосева дает много материала, скажем, о той замечательной иронии, с которой он реально превращал некие идеологемы из разряда основополагающих в маргинальные, как, впрочем, и обратно, — вспомним страстное анафематствование врагам имяславия, укрытое в недрах обширных примечаний книги «Античный космос и современная наука». Конечно, А. Ф. Лосев желал видеть свои работы опубликованными, потому должен был так или иначе кодифицировать их на языке, что господствовал в обществе. Однако «перевод» принципиально не искажал содержательной стороны сообщаемого. Вот пример из истории создания «Диалектических основ математики». В архиве А. Ф. Лосева сохранился небольшой машинописный текст с перечнем поправок по данной книге, которые рассматривались в ответ на критические замечания С. А. Яновской и относились, можно предположить, к середине 30–х годов. Автором предусматривались некоторые коррективы «в целях большей ясности» и вносились «чисто математические изменения» (в изложениях аксиомы Паша, проблем упорядочения множеств, гильбер–товского формализма и др.), а также изменения «ради избежания политических кривотолков» и «в целях подчеркивания философского объективизма» книги (анализ дошедшей рукописи показывает, что правка носила сугубо косметический характер). В заключение перечня фиксировалось незыблемое и для нас, теперешних читателей, поучительное: «Оставлены без изменения все места, где идет чисто логический анализ. И вообще защищается логика как чистая наука». Обнаружился в архиве и образчик неизбежной реакции на подобную установку—в виде отзыва на «Диалектические основы математики» за подписью П. Жаровой. Тогдашний критик почему–то «отказывается видеть какой–нибудь вразумительный смысл» в высказываниях философа, но зато уверенно замечает, что «автор исходит из идеалистических, можно смело сказать, религиозно–мистических установок, проповедуя которые поднимается подчас на ступень подлинного поэтического пафоса». Достаточная временная дистанция и, главное, возможность напрямую познакомиться с учением А. Ф. Лосева дает нам все основания убедиться, насколько его критики были пристрастны и сколь точно сама эта критика характеризовала обстоятельства момента высказывания. § 3. У ПОСЛЕДНИХ «КАК» И «ПОЧЕМУ» Пожалуй, о самой глухой «тьме меона» сказано достаточно. Куда содержательнее обещает быть рассмотрение более дружественного А. Ф. Лосеву окружения. Будем иметь в виду деятельность тех интеллектуалов, которые г руппировались тогда вокруг уже немногочисленных (легальных и не-) очагов свободной мысли, и в частности вокруг Московской математической школы и московского, уже нелегального, кружка имяслав–цев. Однако такое рассмотрение приходится предварять одной важной оговоркой: данный период истории отечественной мысли еще недостаточно изучен. К примеру, лишь совсем недавно были предприняты первые попытки описания реальной духовной атмосферы в известной, казалось бы, Московской математической школе тех лет[243]. Самое интимное и самое важное получало тогда только устную форму, в публикации или в переписку попадали лишь отдаленные намеки и недомолвки, а доверенные бумаге мысли, даже не самые радикальные, вполне могли удостоиться «депонирования» в хранилищах Лубянки [244]. Потому многие предлагаемые ниже сближения и сопоставления в большинстве своем носят преимущественно реконструктивный, гипотетический характер — нужно это учесть. Взаимообогащающими прежде всего объективно предстают творческие и личные отношения А. Ф. Лосева с математиками Д. Ф. Егоровым и Η. Н. Лузиным. От первого А. Ф. Лосев получал бесценные уроки строгого и сжатого изложения математического материала, от второго— особый интерес к теории меры и проблематике измеримости, а от обоих вместе — важные интуиции теории множеств и функционального анализа. Признанные лидеры Московской математической школы в своем творчестве демонстрировали союз, о коем столь много хлопотал сам А. Ф. Лосев, — «тот союз философии и математики, который так част в интуитивных глубинах у настоящих философов и математиков и который так редок у тех, кому суждено повторять и распространять философские и математические идеи, но не создавать их впервые» (426). Здесь будет уместно сказать о некоторых особенностях духовного пути Η. Н. Лузина. Известно, что еще молодым человеком он пережил мировоззренческий кризис, связанный и с необходимостью выбора специальности в науке, и, главное, с ранним прикосновением к острейшим проблемам оснований математики (теоретико–множественные парадоксы, проблема континуума). Он отшатнулся от разверзшейся бездны, и даже многолетняя дружба с П. А. Флоренским не принесла облегчения. В своем отчаянном письме к нему Η. Н. Лузин писал, отрекаясь от прежних надежд: «Вы ищете бестрепетного сердца непреложной Истины, оснований всему <…>, а я… я не жду последних «как» и «почему», и, боясь бесконечного, я сторонюсь его, я не верю в него»[245]. Он обманывал себя тем, что сделался «специалистом» и «стал просто математиком» (констатации из той же переписки с П. А. Флоренским), отчего профессия его, конечно же, только выиграла: многие результаты Η. Н. Лузина вошли в классику мировой математики. Однако те самые «как» и «почему» вновь встали перед ним, «философом от математики» (лузинское самоопределение), когда он близко познакомился с А. Ф. Лосевым — «математиком от философии» (как определили бы мы). Сама жизнь подтолкнула их навстречу друг другу и как бы дополнила их автономные существа до некоего целого, пусть и на короткое время и для разрешения, может быть, одного–единственного вопроса, но зато какого: о природе бесконечного. О чем они спорили вечерами в квартирах на Арбате у Лузина или на Воздвиженке у Лосева? Для Η. Н. Лузина воистину личной и воистину уязвляющей представала «область загадок континуума», разрешить которые он хотел, положив все силы на «уничтожение идеи актуальной бесконечности». И — полный крах вместо ожидаемого триумфа[246] . Для А. Ф. Лосева идея актуальной бесконечности не только изначально близка: «бесконечность в любых ее смыслах, и в научно–математическом, и в философском смысле, была для меня подлинной реальностью, включая сюда и многие мои бытовые переживания» [247]. Она еще подлежала исчерпывающему обоснованию, которое, надо признать, удалось. Поэтому и понятно, что лосевские построения о подлинно диалектическом, иерархийном устройстве мира бесконечностей или о структуре континуума (да, сама «бесструктурность», сама «неразличимость» и «сплошность» имеет, по Лосеву, свой особый и узнаваемый лик!) выражены в столь торжественной тональности. Так разыгрывается драма идей в ее кульминационных актах. Далее, неизбежно приходится говорить об идейном сходстве и преемстве, если в кругу современников А. Ф. Лосева выделять фигуру П. А. Флоренского и сопоставлять их творчество. Известно, например, сколь высоко А. Ф. Лосев ставил книгу «Мнимости в геометрии» (1922) и неизменное стремление ее автора к принципиальному единению философии и математики. Безусловно близкими для А. Ф. Лосева предстают пифагорейско–платоновские по своим основаниям взгляды П. А. Флоренского на природу числа (в начале 20–х годов они получили обобщение в работе «Число как форма»), а также трактовка им канторовской теории множеств (особенно показательна ранняя—1904 г. — статья «О символах бесконечности»). Сближают мыслителей и многие общие установки: предпочтение диалектики иным философским системам (откуда, к примеру, бодрое и даже деловое восприятие логических антиномий), лишенное формалистики отношение к познавательным категориям («конкретная метафизика» одного, «абсолютная мифология» другого), понимание не только мировоззренческих, но и мироустроительных функций символизма (оба — активные разработчики имяславской доктрины), готовность рассматривать любые факты и явления в единстве структурно–смысловых (Логос) и выравнивающе–десемантизирующих (Хаос) процессов. Да, их одинаково волновали именно последние «как» и «почему», мысленный взор каждого устремлялся в одну и ту же феноменологическую даль, вперялся в одну и ту же глубинную точку. Различие скорее всего пролегало на стилистическом уровне. Потому П. А. Флоренскому, засвидетельствовано, грезились «корни вещей», каковые он «решительно отличал от бесструктурной мажущейся черной массы»[248], А. Ф. Лосев прозревал «логические скрепы бытия» там, где большинству рисовалось «безумное марево» и «сплошной туман неизвестно чего»[249]. Поневоле играли свою определяющую роль очевидные несовпадения на уровне психологических особенностей этих личностей. Один, как истинный естествоиспытатель–коллекционер, больше любил разнообразие и неповторимость представших пред ним «абстракций», потому в письмах с Солов–ков, припоминая важнейшее из содеянного, П. А. Флоренский особо выделял исследования «индивидуальности чисел», свое «изучение кривых in concreto» и прилагал к письмам скрупулезно и любовно выполненные рисунки озерных водорослей — живых в такой же мере, как математические объекты, и, подобно последним, изощренно–структурных[250]. Оттого другой, прирожденный систематик и классификатор, вдохновенно строил свои «таблицы» подобно Линнею или Менделееву, потому в заметках с берегов Беломорканала (да, в лагерной изоляции, вдали от библиотек поневоле явственнее глас личностной, нутряной сути…) А. Ф. Лосев набрасывал схемы именно систем и типологий, первым делом—числовых. Нельзя не вспомнить здесь и о фигуре В. Н. Муравьева. Он оставил яркий след в публицистике начала века, примыкая к группе авторов «Вех» и участвуя в другом знаменитом сборнике — «Из глубины», успел издать замечательную философскую работу «Овладение временем как основная задача организации труда» (1924). Однако значительная часть его творчества, остающаяся доныне не опубликованной, свидетельствует: одновременно с А. Ф. Лосевым и рядом с ним трудился мыслитель, интересы которого особенно тяготели именно к философским основаниям математики. Имя и число, ипостасийный характер учения Г. Кантора, последовательное развертывание числового принципа в диалектическом синтезе единства–множественности — вот только некоторые из тем, затронутых В. Н. Муравьевым вместе (повторим — одновременно и рядом) с А. Ф. Лосевым. Что же касается нюансов и различий в подходах к этим и подобным темам «философии числа», то их, конечно, надлежит детально обсуждать лишь после должной публикации работ В. Н. Муравьева[251]. Поэтому мы укажем разве лишь на одну примечательную перекличку. Она связана с главой «О форме бесконечности» из «Диалектических основ математики». Стилистика главы определенно тяготеет к самодостаточной округлости эссе, здесь очевидна заостренность нравственных императивов (неожиданная на фоне подчеркнуто нейтрального содержания окружающих глав) и явствен публицистический напор. Иными словами, данный текст носит «вставной» характер и невольно заставляет вспомнить о знаменитых «взрывчатых гнездах» (удачное определение С. С. Хоружего) в повествовательной структуре «Диалектики мифа». Откуда же пришло это «взрывчатое» рассуждение? «Мы изменим природу и космос» (533), — меньше всего нужно читать эту декларацию как марксистский лозунг о переделывании действительности и прежде всего нужно услышать голоса с имяславских собраний 20–х годов. Нужно прислушаться к свидетельству одного из участников таковых, который утверждал о нераздельности субъекта и объекта, мысли и действия, а потому «основной задачей имяславия» ставил «создание гармонической системы органов осуществления имен человеческих и объединение их в имени Божьем», который взывал: «Имя славие, чтобы сохранить то, чего оно достигло, должно стать Имя действием»[252]. § 4. АКСИОМАТИКА И МЕТАМАТЕМАТИКА Остается рассмотреть логико–математические работы А. Ф. Лосева, взяв их как целое и как некую, скажем, световую точку на оттеняющем ее фоне мировых исследований в области оснований математики. Такое рассмотрение правомерно по меньшей мере по двум причинам. Во–первых, к началу 1940–х годов, когда лосевская «философия числа» приняла известную нам форму, многое существенное в данной области уже произошло и о многом главном сам А. Ф. Лосев имел вполне ясное представление (т. е. точку на фон помещать допустимо). Уже был не только исчерпан арсенал наивно–эмпирических определений понятия числа (от Евклида до Локка), была не только создана канторовская теория множеств и вполне выявлены ее парадоксы, но и выдвинуты все основные идеи для их преодоления[253]. Почти завершился длинный и трудный путь от Principia mathematica А. Уайтхеда и Б. Рассела (1913) к «Основаниям математики» Д. Гильберта и П. Вернайса (1939), уже начиналась (в том же 1939 г.) многотомная сага Никола Бурбаки, и уже был получен основной результат К. Гёделя (1931), указующий подобным титаническим усилиям нежданно убедительный предел[254]. Во–вторых, эта проделанная целой армией мыслителей работа лишний раз убеждала самого А. Ф. Лосева в том, что подлинно философское осмысление математических материалов слишком далеко от завершения и что «философию числа» можно и должно строить—ему, здесь и теперь (а нам, следовательно, точку и фон необходимо различать). Прежде всего, лосевское понимание природы математических объектов максимально чуждо (еще популярному тогда в науке) психологическому подходу, выводящему представление о числе из некоторого комплекса актов переживаний субъекта. Автором «Диалектических основ математики» отрицалась и куда более известная, а для отечественной философской общественности советского периода даже едва ли не единственная доктрина о научных, в том числе математических, понятиях как результате абстракции, отвлечения от материальной действительности. При весьма почтенном возрасте, — уже после Аристотеля надо было рассматривать «математические предметы», «полагая что–то обособленно от привходящих свойств» (Met. 1078а 15), — и при наличии непрестанно возобновляемой череды апологетов (здесь видное место занимала как раз С. А. Яновская, один из главных идейных оппонентов А. Ф. Лосева) метод абстракции страдает принципиально важным дефектом: сама установка на абстрагирование имплицитно полагает знание именно того понятия, которое надлежит определить (логический круг). Отметим к случаю, что прямую борьбу с аристотелевским пониманием числа как абстракции А. Ф. Лосев начал еще в работах «Диалектика числа у Плотина» (1928) и «Критика платонизма у Аристотеля» (1929)[255]. В этих специальных античных экскурсах он приглашал современного читателя вернуться к старинному спору между Платоном и Аристотелем о природе числа, чтобы заново рассмотреть аргументы сторон и осознанно реабилитировать платонизм в математике. Не столь однозначно отрицательным было отношение А. Ф. Лосева к логицизму. С одной стороны, ему безусловно импонировали начинания некоторых выдающихся ученых, приступивших в конце XIX в. к строительству оснований математики на аксиоматических принципах. Действительно, подобно тому как приверженцы методов Пеано и Гильберта получали многочисленные математические истины из немногих базовых утверждений–аксиом, так и А. Ф. Лосев последовательно (снизу вверх, от немногих посылок к многим следствиям) выводил и отдельные математические понятия, и развернутые теоремы, и целые типологии математических наук. Да, громадное древо математики произрастает из малого зерна, с нею развертываются и ее аксиомы. Тут действительно уместно высказывание «ботанического» свойства: аксиоматика, по Лосеву, «основана на последовательном созревании категорий» (404). Однако, с другой стороны, для него были неприемлемы многие изначальные, родовые особенности гильбертовской школы. Это и демонстративный формализм, т. е. сосредоточение на проблемах непротиворечивости вывода при игнорировании содержательных интерпретаций результатов (для русского философа подобная позиция попросту безжизненна), это и установка на строго обозримые «финитные» методы рассуждений (потому формалистам предписывалось «изгнать» важнейшую идею актуальной бесконечности), это, наконец, рискованная самозамкнутость гильбертовской теории доказательств. Последняя особенность заслуживает отдельного комментария. Гильбертовская программа «спасения» классической математики от парадоксов, по определению С. Клини (1967), состоит в следующем: математика «должна быть сформулирована в виде формальной аксиоматической теории, после чего следует доказать ее непротиворечивость, т. е. установить, что в этой формальной аксиоматической теории нельзя доказать противоречие»; доказательства при этом становятся «предметом специальной математической дисциплины, названной Д. Гильбертом метаматематикой, или теорией доказательств»[256]. Данная программа планировалась к реализации для арифметики, функционального анализа и, в перспективе, геометрии. Над отдельными фрагментами математики старательно возводились ажурные конструкции гильбертовой метаматематики (это оказалось изнурительно трудным занятием), когда подоспели знаменитые теоремы Гёделя. Здесь выяснилось, во–первых, что во всякой математической теории можно сформулировать вполне осмысленное, но недоказуемое и, вместе, неопровержимое утверждение, т. е. внутри всякой такой теории, достаточно богатой содержательно, гарантировано присутствие сомнительной ее составляющей. Потому доказательство непротиворечивости «изнутри» невозможно. Выяснилось, во–вторых, что непротиворечивость данной формальной теории доказывается только в рамках иной, более развернутой формальной теории, та в свою очередь нуждается в новом расширении, и т. д. Потому доказательство непротиворечивости «извне» всегда незавершимо. Таким образом, было строго доказано наличие принципиальных ограничений на строгость доказательств в математике. Это фактически указывало на необходимость выхода за пределы метаматематики (по Гильберту) в объемлющие ее области, причем по двум путям: либо пытаться преодолеть барьер, поставленный результатами Гёделя, за счет отказа от прежнего экстремизма и созданием новых формальных методов и повторного (через них) обращения к проблеме существования математических объектов, либо развивать более содержательную «метаматематику», действительно конструируя такие объекты из некоторых первооснов и уже не прибегая к математическим формализмам. Первым путем и по сей день следуют многие специалисты по основаниям математики[257], по второму пути пошел А. Ф. Лосев и больше, кажется, никто. Пришла пора уточнить терминологию. Насколько правильно будет связывать «метаматематику» впрямую с именем Лосева? Ведь мы знаем, что сам автор называл свое учение либо, вполне определенно, «диалектическими основами математики» (как в названии основной своей книги по философским вопросам математики), либо, вполне общо, «философией числа» (и этим обозначением мы уже пользовались в предыдущем изложении). Кроме того, термин еще и «занят» под название сугубо математической дисциплины, введенной, как сказано, Д. Гильбертом. И все–таки смысловой пласт этого термина «метаматематика» слишком ценен, чтобы отказываться от него, доверяясь лишь формальным доводам. Заметим прежде всего, что построения А. Ф. Лосева нигде не расходятся с математическими данными. Автор даже с некоторой (методологически оправданной) назойливостью и монотонностью вновь и вновь показывает, где и как его содержательная аксиоматика, его «основоположения числа» естественно перерастают в аксиомы и теоремы самой математики. Можно сказать, метаматематика А. Ф. Лосева проделывает свой отрезок пути и заканчивает там, где начинает математика, — в изощрениях профессионалов–нефилософов. Логически А. Ф. Лосев оказался раньше, впереди, прежде специалистов по математике и ее основаниям. Исторически имелась уже математика со всеми ее достижениями, принципиальными кризисами, необозримостью тем и предметов, когда явились на свет (точнее, от света, «в стол» А. Ф. Лосева) построения новой метаматематики. Эта ситуация определенно повторяет одну историю, — вспомним происхождение явно родственного «метаматематике» термина. Возник он случайно, когда Андроник Родосский (I в. до Р.Х.), заново упорядочивая и переписывая рукописи Аристотеля, вслед за группой сочинений «о природе» (ta physika) поместил еще группу под условным названием «То, что после физики» (ta meta ta physika). Так наука, «исследующая первые начала и причины» (Met. 982b 10) и самим Аристотелем величаемая «первой философией», стала «метафизикой». То, что в материальном мире занимало локус «после», в мире идей оказалось «до». Впрочем, это только аналогия. О самом прямом вхождении лосевской «философии числа» как метаматематики в традицию «наук о первоначалах», как и о справедливости притязаний на многообязывающую семантику греческой приставки «мета», легче судить, если привлечь к нашему терминологическому рассмотрению книгу С. Л. Франка «Предмет знания» (1915). Автор книги ставит перед собой задачу построения единой «теории знания и бытия», предпочитает ее называть «не онтологией, а старым и вполне подходящим аристотелевским термином «первой философии»», себя относит опять–таки «к старой, но еще не устаревшей секте платоников» и особо выделяет в последней фигуры Плотина и Николая Кузанско–го[258]. Не правда ли, тут узнаются и предпочтения А. Ф. Лосева? Но еще больше согласий и перекличек обнаруживается в главе «Время и число» книги С. Л. Франка. В основу построений здесь кладется «всеединство» («единство целого», «единство единства и множественности»), которое и рассматривается как «единственный подлинный источник, из которого может быть выведено понятие числа». Единственный — ибо только на этом пути не возникает логический круг, ибо, только отправляясь от «всеединства», замечает С. Л. Франк, «мы действительно не предполагаем математических понятий единого и многого, а восходим к тому, в чем, как таковом, этих моментов еще нет и из чего они должны возникнуть»[259]. Далее следовало непосредственное «выведение числа из всеединства». Именно этой части «Предмета знания» А. Ф. Лосев посвятил специальный комментарий в книге «Музыка как предмет логики» (1927), где он тоже строил концепцию числа с опорой на трактат Плотина (Эннеады VI. 6 «О числах») и обнаруживал согласованность конструкций—своей, Франка и Плотина. Это и не удивительно: «одни и те же предпосылки приводят при правильном методе и к тождественным результатам»[260]. Лосевская метаматематика, в основе которой лежат глубокие неоплатонические интуиции, получала, таким образом, мощную поддержку примером непосредственного предшественника. Но этого мало. В своем построении и анализе «числовых структур бытия» А. Ф. Лосев сумел избежать одного существенного перекоса «первой философии» по Франку, на который последнему было указано некоторыми наиболее проницательными критиками. Так, в своей рецензии на книгу «Предмет знания» Н. А. Бердяев отмечал неоправданный «монизм» и упрощенность решения проблемы «изменения, творческого движения, возникновения нового, небывшего», напоминал о неустранимом присутствии во всеединстве не только «света» как творящего начала, но и «тьмы», «темных волн безосновной основы бытия», и в итоге определял: «Знание потому имеет творческую природу, что оно должно одолевать этот вечный напор тьмы, пронизывать его светом, оформлять этот изначальный хаос[261] . Для А. Ф. Лосева уже естественно относиться к извечной «меональной тьме» не только с пониманием, но и чрезвычайно конструктивно: «Из этого становящегося мрака как из некоей глины будем созидать те или иные смысловые фигурности» (501), — возглашает он фундаментальный принцип теории строительства математических объектов и повсеместно проводит этот принцип в практике своей метаматематики. Еще и в «Диалектике художественной формы», лет за десять до «Диалектических основ математики», легко отыскиваются те же мотивы и установки. К примеру, эта: «В сфере смысла, где слиты в единое и сплошное тождество категория и ее внутреннее инобытие, вполне позволительно выделять поочередно то самую категорию, подчиняя ей ее инобытие, то ее инобытие, подчиняя ей его категорию» (классификация искусств по «категориальному» и «мео–нальному» принципам). Или прочтем и учтем лосевскую похвалу Шопенгауэру за то, что «он больше всех других почувствовал как раз алогическую основу мира в отличие от всякой оформленности»[262]. § 5. ДИАЛЕКТИКА КАК ТОЧНАЯ НАУКА Мы рассмотрели, таким образом, и дальнее, и ближнее окружение лосевской «философии числа», то окружение, в драматическом притяжении–отталкивании с которым и сформировалась последняя. По ходу рассмотрения уже были получены и некоторые содержательные характеристики самого ядра, центра всех соотнесений. Пришла пора сосредоточить наше внимание специально на этом центре, в его смысловой точке. А. Ф. Лосеву не удалось реализовать в полном объеме замысел строго диалектического обоснования математики. Причиной тому следует указать как обстоятельства общего плана (вряд ли подобное предприятие по силам одному человеку, даже при самых благоприятных внешних условиях), так и частные обстоятельства печального свойства, о которых уже говорилось выше. Добавим еще одно: значительная часть довоенных рукописей периода максимальной активности автора на философско–математическом поприще погибла летом 1941 г. в результате прямого попадания фашистской авиабомбы в дом на Воздвиженке, где была квартира А. Ф. Лосева. Чего–то не успел сделать или не дали, что–то было, готовое, уничтожено. Потому теперь приходится заниматься реконструкцией общей панорамы математических наук, как она представлялась автору «Диалектических основ математики» (особо ценны для нашей задачи § 9, 34, 80 упомянутой книги), а также отыскивать следы прежних замыслов в более позднем творчестве философа. По ходу этих операций будут видны и общие контуры всей конструкции, и следы утраченных ее деталей. Математика как феномен культуры. Проведя исходное тематическое разделение по сферам a) философии чистой математики, b) философии математического естествознания, c) культурно–социальной истории числа (33), А. Ф. Лосев сосредоточил свой анализ на первой сфере, вынужденно «оставляя пока в стороне естествознание, психологию, социологию, теорию самой диалектики числа и историю» (35). Характерно это «пока». Нам неизвестны лосевские работы, специально посвященные «временно покинутым» темам, однако интерес к социально–культурным типологиям, к «физиономике» математических воззрений можно проследить у него на протяжении всей жизни. В тех же «Диалектических основах математики» нетрудно обнаружить примеры напряженного внимания автора к социально–исторической обусловленности тех или иных математических построений. На них, кстати, особо обращает внимание читателей первый и самый чуткий рецензент книги — В. М. Лосева (14). Или взять один из таких «бродячих» сюжетов в творчестве А. Ф. Лосева, как логику исчисления бесконечно–малых. В роли своеобразного пробного камня она многократно привлекалась философом то для характеристики мировоззренческого стиля Возрождения (с его богоборческим лозунгом quo поп ascendam) и вообще «прогрессизма» новоевропейской культуры, то для анализа телесных интуиций античности и ранней истории представлений о дискретности, пределе и континууме. В своем неизменно типологическом отношении к различным проявлениям духа, к различным культурам А. Ф. Лосев предстает несомненным продолжателем усилий О. Шпенглера, для которого «то, что выражается в мире чисел», всегда «есть стиль души»[263]. Метаматематика обязана быть еще и морфологией культуры. Философия чистой математики. Область собственно математики, с точки зрения философа, разделяется также на три сферы: a) общая теория (логика) числа, исследующая перво–принципы числа, число как таковое, сущность числа, b) философия математических дисциплин, специальная теория числа, теория числа в частности, теория числа как явления, c) философия теории вероятностей и математической статистики, исследующая число в казусах, в жизни, в действительности (40). Дошедшая до нас часть «Диалектических основ математики» вполне представляет всю общую теорию числа (§ 10—78) и дает переход к специальным вопросам (§ 81 и далее). Специального исследования «числа в жизни» (теоретико–вероятностной проблематики) автор не оставил, однако о многом мы можем–таки судить: каждый шаг лосевской аксиоматики получал завершение именно на материале данного слоя математической реальности. Специальная теория числа. Здесь также проводится классически–триадное разделение: а) науки о бытии или сущности числа, об интенсивном числе (арифметика, алгебра, анализ), b) геометрические науки об инобытии или явлении числа, об экстенсивном числе, c) теория множеств как наука о синтезе арифметической и геометрической ипостасей числа, об эйдетическом числе. Второй и третий разделы, строго говоря, нужно отнести к утратам. Исчез, например, целый том по геометрии, о котором несколько раз (227, 302) А. Ф. Лосев упоминает и куда отсылает за подробностями. Однако примем в расчет, что логико–диалектической проработкой геометрических идей автор занимался уже на страницах книги «Античный космос и современная наука». С тем же упреждением осваивалась и теоретико–множественная проблематика, если иметь в виду раннюю «Музыку как предмет логики». Словом, уже дошедшего—много. Даже одно только напоминание о глубинном единстве наглядно–геометрических и счетно–арифметических подходов, убедительно демонстрируемое лосевской метаматематикой, будет весьма кстати сегодня, когда философы и математики все еще бьются над во многом уже решенными, как оказывается, проблемами. Для примера укажем на оппозицию «арифметического» (Rechnen) и «геометрического» (Zeichnen), о которой всерьез заговорил за рубежом Д. Фанг, а у нас—К. И. Вальков[264]. Пора на самом деле «обратиться к беспристрастному и ко всему одинаково равнодушному суду диалектики» (389), а не замирать, по Фангу, в безмолвном ужасе перед сфинксом «единой и неделимой и, в конечном итоге, непостижимой тотальности» математики или же вместо одной крайности — излишней «арифметизации» впадать в другую — в крайность «геометризма»[265]. Бытие числа (интенсивное число). Науки о бытии или сущности числа можно представить, согласно А. Ф. Лосеву, в виде диалектической триады: a) арифметика и алгебра как учения о неизменной сущности числа, о постоянных величинах и их функциях, b) дифференциальное, интегральное и вариационное исчисления как учения об инобытийной изменчивости числа, о переменных величинах и их функциях в скалярной форме, c) векторное и тензорное исчисления как учения о действительности числа, о числе синтетическом, ориентированном, направленном (442). Здесь второй и третий разделы, если опираться только на «Диалектические основы математики», также следует считать утраченными. Однако определенный анализ диалектической сущности, например, интеграла и дифференциала также отыскивается в книге «Музыка как предмет логики». Утрату содержательной части второго раздела в некоторой мере восполняет публикуемая в настоящем томе работа А. Ф. Лосева «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Арифметика и алгебра. Внутри первой сферы интенсивного числа А. Ф. Лосев выделяет очередную триадическую структуру: a) арифметика как учение о непосредственной сущности числа в ее бытии, о числе в себе, b) алгебра как учение о непосредственной сущности числа в ее инобытии, о числе функционально выраженном, с) алгебраический анализ (теории форм, инвариантов и др.) как учение о непосредственной сущности числа в ее становлении (430, 446). Как следует из публикуемого «Содержания» первой книги «Диалектических основ математики» (23), степень детализации построений лосевской метаматематики была столь велика, что к темам алгебры переход планировался лишь в самом конце целого тома. Все дальнейшее кануло в Лету. Да и от собственно арифметической части книги сохранилось далеко не все. Так что, предприняв еще одно посещение мира числовых триад, нам остается назвать и последние структуры, и последние утраты. Арифметика. Внутри арифметики, согласно общедиалектической схеме А. Ф. Лосева, следует различать: a) натуральный ряд как бытие сущности числа, как акт ее полагания, b) типы чисел (отрицательные, рациональные, мнимые и др.) как инобытие чисел натурального ряда, c) действие с числами как становление сущности числа, типы чисел в разнообразных направлениях и комбинациях счета (ООО). Сохранившийся текст «Диалектических основ математики» обрывается на материалах заключительной части второго из названных разделов. Впрочем, в предыдущем изложении заключено достаточно общих указаний и конкретных примеров, по которым вполне уверенно достраиваются логико–диалектические аналоги для арифметических операций. На полученную последовательность—анфиладную последовательность одна в другую врастающих триад—еще нужно наложить объединяющий все шаги и этапы процесс, чтобы картина получилась полной: ведь вся математика, показывает и доказывает А. Ф. Лосев, есть не что иное, как развитое и детализированное понятие числа. Число как первая категория, первая «осмысленная, оформленная по ложенность, категориально оформленная положенность» (105), как «слепительное», напомним, «Да» составляет саму основу математических объектов. Все есть число. Остается только оговорить: ту перво–категорию, тот «акт полагания подвижного покоя самотождественного различия», что пронизывает любые закоулки величественного здания математики, не обязательно называть «числом». Действительно, в угоду пуританской строгости можно окрестить фундаментальную логико–диалектическую конструкцию каким–либо специальным термином, к примеру назвать ее по случаю и в честь А. Ф. Лосева «L–выражением» или же, в более математизированном духе, «L–кортежем»[266] . Далее придется поступить так, как уже приходилось действовать в области математической логики, т. е. в области формальной, нелосевской метаматематики, причем именно в 30–х годах. В частности, там вместо интуитивно ясного, но строго не определенного понятия «вычислимой функции» стали тщательно изучать свойства так называемых «общерекурсивных функций», определяемых уже алгоритмически точно. Далее было показано, что у вновь введенного формализма достаточно изобразительной мощи, чтобы заместить собой несколько расплывчатое понятие вычислимости. Наконец, между классами содержательных и формальных функций была провозглашена эквивалентность (в форме «тезиса Черча»), — именно провозглашена, а не доказана, поскольку последнее невозможно ввиду принципиально различной природы сравниваемого. Желающим увековечить свое имя в новом «тезисе» можно предложить аналогичную проверку для числа и L–кортежа. Впрочем, изучая «Диалектические основы математики», нетрудно убедиться, что А. Ф. Лосев сам положил много усилий для демонстрации справедливости подобного «тезиса» и повсеместно обнаруживал, как математический материал «с огромной точностью воспроизводит» логико–диалектические прообразы (294). Обозревая теперь лосевский проект метаматематики и оценивая предложенный философом неблизкий путь от максимально общих принципов «философии числа» до мельчайших фактов самой частной из математических наук, арифметики, мы можем наконец судить и о замысле— он масштабен, и о степени его воплощения — при многих потерях и необходимых оговорках все самое трудное свершено, все главное было сформулировано и предано бумаге. Обозревая труды, в невольном одиночестве исполненные А. Ф. Лосевым, можно констатировать, что «задача философского обоснования математики» если и не разрешена единолично им, то вполне может быть разрешима коллективными усилиями на путях, проложенных лосевской метаматематикой, а саму диалектику как основное орудие этой метаматематики теперь «можно считать <…> настолько зрелой и конкретизированной дисциплиной, что она вполне может (и даже обязана) войти» — и, как мы знаем, успешно–таки вошла — «в детали числовых конструкций, не ограничиваясь общими рассуждениями только о самом понятии числа» (424). § 6. ВМЕСТО ЗАКЛЮЧЕНИЯ Итак, определенный период научной биографии А. Ф. Лосева, пройденный, по его собственной квалификации, под знаком ярко выраженного «отвлеченно–диалектического эроса», вполне закономерно завершился систематическими логико–математическими исследованиями. Как бы ни относиться к некоторым лосевским сочинениям, «гипертрофированным в смысле логики и диалектики» (В. М. Лосева), к этому всеохватному «унифицированному строительству из диалектических блоков» (С. С. Хоружий), ясно и достоверно следующее: мощный творческий эрос позволил А. Ф. Лосеву занять достойное место в ряду немногих подлинных мыслителей, для которых постижение интегрального целого, обретение Логоса в Хаосе было превыше всего. До А. Ф. Лосева в этот ряд входили и входят преимущественно естествоиспытатели — отечественные созидатели систем, прежде всего Д. И. Менделеев, Е. С. Федоров, В. И. Вернадский, Н. И. Вавилов, А. А. Любищев, среди современных исследователей — Г. М. Идлис, Ю. А. Урманцев, Ю. И. Кулаков. Последний из названных, вспоминая предысторию созданной им теории физических структур, высоко оценивал совет своего учителя И. Е. Там–ма, выдающегося физика–теоретика: в поисках «единого универсального языка» природы нужно вооружаться примером «прежде всего русских философов», которые «о многом догадывались, хотя и не могли сформулировать свою идею всеединства» достаточно строго[267]. Творчество А. Ф. Лосева показывает, что русская философия оказалась способна не только «о многом догадываться», но и «многое сформулировать». В. Я. Троицкий ПРИМЕЧАНИЯ Настоящий том произведений А. Ф. Лосева целиком составляют работы, ранее не публиковавшиеся — если не считать небольших отрывков из «Диалектических основ математики>ч(Начала. 1993. № 2; 1994. № 2—4). Все работы обнаружены в архиве автора. Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений. «Диалектические основы математики» замышлялись как первый том серии из двух или более томов. Текст сохранился в двух неидентичных экземплярах машинописи 30–х годов. Работа не окончена: в рукописи 107 параграфов, тогда как в содержании (см. наст, т., с. 18—23) указаны 128; поправки А. Ф. Лосева и В. М. Лосевой и вписанные авторской рукой формулы имеются лишь в первой ее половине. Машинопись не была сверена автором и содержит многочисленные лакуны и искажения. Книга датируется серединой 30–х годов, но не позднее 1936 г. (во всяком случае ее основная часть), когда было написано «Предисловие» В. М. Лосевой. При подготовке публикации привлекался ряд изданий, либо прямо указанных в тексте, либо таких, о которых с высокой долей вероятности можно предположить, что они были использованы автором. Из последних часть приведена нами в примечаниях, остальные перечислим здесь, указав тематику и характер использования: 1ильберт Д. Основания геометрии. Пгм 1923 (уточнение формулировок аксиом геометрии); Бертитейн С. Η. Теория вероятностей. Μ.; Л., 1927 (уточнение формулировок аксиом теории вероятностей); Математический сборник. 1922. Т. 31. Вып. I (уточнение формулировок аксиомы выбора и библиографии); Флоренский П. А. Мнимости в геометрии. Μ., 1922 (библиография трудов о мнимых числах); Клейн Ф. Элементарная математика с точки зрения высшей. Μ., 1933 (недостающая формула расстояний циклических точек); Лузин И. Н. Интеграл и тригонометрический ряд. Μ., 1916 (уточнение формулировок из теории функций). Рисунки воспроизведены—с учетом авторских отсылок—по изданиям: Энциклопедия элементарной математики. Т. 2. Одесса, 1909 (рис. 1—5); Богомолов С. А. Основания геометрии. М.; Пг., 1923 (рис. 6, 7); Лямип А. А. Неэвклидова геометрия. Μ., 1914 (рис. 8). Работы второй части тома публикуются также по машинописи, содержащей авторские поправки. Время написания фрагмента «Математика и диалектика» относится к периоду создания «Диалектических основ математики»; остальные тексты приблизительно датируются первой половиной 40–х годов. Составители данного тома соблюдали принципы, принятые при работе над предыдущими томами. Без упоминания в примечаниях исправлены опечатки и явные описки (искажения слов, рассогласование членов предложения, механические повторы), изменена устаревшая орфография (коррялат, проэктивный, итти и т. д.), пунктуация приближена к современной, унифицированы шрифтовые выделения, уточнена нумерация параграфов. Все конъектуры помещены в квадратные скобки, в том числе отдельные математические буквенные символы; в случаях, когда не удалось восстановить авторские ссылки на параграфы внутри работы, отсутствующий параграф отмечен пустыми квадратными скобками; кроме того, в наст, томе встречается принятое в математике обозначение квадратными скобками отрезка. Угловыми скобками обозначены имеющиеся в тексте пропуски и даны реконструированные математические формулы. В спорных случаях исправления в тексте оговариваются в примечаниях, тем самым читателю предоставляется возможность судить о правомочности поправок, сравнив их с оригиналом. Если в тексте заподозрено искажение, однако неясно, что должно стоять взамен, в примечании указывается, что так в рукописи. В «Диалектических основах математики» сохранены разночтения между некоторыми пунктами авторского содержания и названиями параграфов в тексте. Примечания ограничены текстологическими комментариями и переводами иностранных терминов и выражений. Выполнены В. П. Троицким.

The script ran 0.051 seconds.